

Report on Geotechnical Desktop Review

Site B Development Showground Road and Pennant Street, Castle Hill

> Prepared for QIC Ltd

Project 84335.16 July 2022

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	84335.16	Document No.	R.001.Rev0		
Document title	Report on Geotechnic	cal Desktop Review			
	Site B Development				
Site address	Showground Road and Pennant Street, Castle Hill				
Report prepared for	QIC Ltd				
File name	84335.16.R.001.Rev	1			

Document status and review

Status	Prepared by	Prepared by Reviewed by		
Revision 0	Fiona MacGregor	Ray Blinman	3 June 2022	
Revision 1	Fiona MacGregor	Ray Blinman	1 July 2022	

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	David Radford, Essence Project Management Pty Ltd
Revision 1	1	0	David Radford, Essence Project Management Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	PBL:0	pp Fiona MacGregor 1 July 2022
Reviewer	ABL:0	1 July 2022

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introd	duction	1
2.	Site [Description	1
3.	Regio	onal Mapping	3
	3.1	Geology	3
	3.2	Soil Landscapes	3
	3.3	Soil Salinity	4
	3.4	Groundwater Bore Database	4
4.	Previ	ious Investigations	4
	4.1	Investigation Details	4
	4.2	Geotechnical Units	5
	4.3	Interpreted Depths and Levels of Units	6
	4.4	Groundwater	8
5.	Prop	osed Development	9
6.	Com	ments	11
	6.1	Interpreted Geological Model	11
	6.2	Excavation Conditions	12
	6.3	Vibrations	12
	6.4	Excavation Support	13
		6.4.1 General	
		6.4.2 Temporary Batters	
		6.4.3 Design of Lateral Support	
		6.4.4 For Mobilised Wedge Loading6.4.5 Ground Anchors	
		6.4.6 Excavation Induced Ground Movements	
	6.5	Footings	
	6.6	Effect of Development on Metro Tunnels	
	6.7	Earthquake Loading	
	6.8	Pavement Design	
7.		ations	
1.	LIIIIla	auons	∠ I

Appendices

Appendix A:	About This Report
Appendix B:	Selected Architectural Drawings
Appendix C:	DP Drawings
Appendix D:	Results of Previous Boreholes and Test Pits
	D1: Deep Cored Boreholes
	D2: Shallow Augered Boreholes
	D3: Test Pits

Report on Geotechnical Desktop Review Site B Development Showground Road and Pennant Street, Castle Hill

1. Introduction

This report presents the results of a geotechnical desktop review carried out by Douglas Partners Pty Ltd (DP) for the proposed Site B Development, to be located on a site occupying most of the block extending between Castle Street, Pennant Street, Showground Road and Kentwell Avenue at Castle Hill.

The desktop review was requested by Essence Project Management Pty Ltd (EPM), on behalf of QIC Limited (QIC) and was undertaken in accordance with the agreed scope, as outlined in DP's email proposal dated 18 March 2022.

It is understood that Site B has been divided into six lots (Lots A to F) and that multistorey residential buildings, with associated basements and access roads, are proposed for each of the lots. Preliminary architectural drawings for the development were prepared by the project architects Clarke Hopkins Clarke, dated February 2021. A selection of these drawings showing the scope of the proposed development are presented in Appendix B.

This desktop study has been undertaken to combine the results of several previous investigations undertaken on or near the site, in order to compile an interpreted geotechnical model for the site and to provide preliminary geotechnical advice for planning of developments across Site B.

A separate geotechnical report has previously been prepared for the proposed leisure centre to be constructed on Lot A (known as the Woodward Development). This report was issued on 1 June 2022 (ref 84335.14.R.002.Rev1).

2. Site Description

Site B occupies most of the block of land at Castle Hill bounded by Castle Street to the north-east, Pennant Street to the south-east, Showground Road to the south-west and Kentwell Avenue to the north-west. The site extends over an area of approximately 4.2 hectares.

The site does not include the property in the eastern corner of the block which is occupied by the Castle Grand public library, a community centre and an associated multistorey residential apartment building. The location of Site B is shown on Figure 1 below.

Figure1: Site Location

Much of Site B was previously occupied by a former school which was demolished sometime between 2009 and 2011. The site also encompasses some former residential lots along Kentwell Avenue, Castle Street and Showground Road. The site location and recent site conditions are shown on Drawing 1, in Appendix C.

The ground surface within the site slopes mostly towards the north, from about RL 134 m AHD (Australian Height Datum) in the southern corner of the site to about RL 115 m at the northern corner (intersection of Castle Street and Kentwell Avenue).

Following the demolition of some previous buildings on the site, fill has been placed on some areas to facilitate site drainage and then covered with grass. Mature trees and other vegetation are present over the central portion of the site. Residential properties along Kentwell Avenue are still occupied by one and two storey residences and their gardens.

In 2019, the connection of Kentwell Avenue with Showground Road was cut off as part of the Showground Road upgrade project. The road was widened and a new wider intersection stub was constructed to provide access to the site as part of the staged development of Site B. An unsealed gravel driveway was subsequently formed from the southern end of Kentwell Avenue along the southern boundary and provides access to the adjoining Site B. The driveway has been formed using recycled concrete aggregates.

The twin tunnels of the Sydney Metro North West rail line pass below the southern part of the site, beneath Lots A, D and F. Survey data for the tunnels, as provided by BG&E, shows a stepped, rectangular rail reserve around the twin tunnel cross-section. Reference to the survey data indicates that the stepped zones of the reserve underlie the site with the top of the rail reserve reportedly at reduced levels of RL 119.7 and RL 111.7, reducing to the west. Comparing these levels with existing ground surface levels indicates that the top of the rail reserve is approximately 13 m to 15 m deep.

3. Regional Mapping

3.1 Geology

Reference to the Sydney 1:100 000 Geological Sheets indicates that the site is underlain by Ashfield Shale, which overlies the Mittagong Formation and then the Hawkesbury Sandstone formation.

Ashfield Shale is part of the Wianamatta Group and typically comprises black to dark-grey shale and laminite (finely interbedded siltstones and fine-grained sandstones) with the overlying residual soils typically comprising moderately to highly reactive silty clay and clay.

The Mittagong Formation is a transitional geological sequence between the Ashfield Shale and the underlying Hawkesbury Sandstone and is a relatively thin formation of variable thickness, typically less than about 6 m thick. It typically comprises interbedded shale, laminite and fine-grained quartz sandstone.

Hawkesbury Sandstone typically comprises medium to coarse-grained quartz sandstone, with some minor shale and laminite lenses.

Boreholes drilled as part of DP's investigations have encountered rock belonging to the Ashfield Shale within the proposed excavation depth and the underlying Mittagong Formation. The top of the Hawkesbury Sandstone formation was identified in some of the deeper boreholes which penetrated to depths of 20 m or more.

The Ashfield Shale formation typically includes irregularly spaced joints dipping between 30 and 60 degrees from horizontal with a wide range of orientations, whereas the underlying Hawkesbury Sandstone formation typically includes two sets of near vertical joints trending approximately NNE (020°) and ESE (110°). Shallow dipping (20° to 30°) thrust faults with associated clayey seams are also common within the above geological units.

3.2 Soil Landscapes

Reference to the 1:100 000 Soil Landscapes of Sydney Sheet indicates that the natural soils on the site belong to the Glenorie soil landscape.

The Glenorie soil landscape is characterised by topography of undulating to rolling low hills on Wianamatta Group shales, with local relief to 50 m to 80 m and slopes of 5% to 20%, typically represented by narrow ridges, hillcrests and valleys. This is a residual soil landscape, which the mapping indicates comprises multiple soil horizons that range from deep yellow podzolic soils

comprising mostly clays on lower slopes; humic gleys, yellow podzolic soils (clays) and gleyed podzolic soils along drainage lines; shallow to moderately deep red podzolic soils on crests; and moderately deep red and brown podzolic soils on upper slopes. These soils typically have a high soil erosion hazard, exhibit localised areas of impermeable highly plastic subsoil and are typically moderately reactive.

3.3 Soil Salinity

The NSW Salinity Potential map for Western Sydney indicates a moderate salinity potential category is relevant for the site and its immediate surrounds. The mapping is based on soil type, surface level and general groundwater considerations but is not generally 'ground-truthed', hence actual soil salinity may differ.

3.4 Groundwater Bore Database

An NSW Office of Water groundwater bore search was conducted for the site. There were no groundwater bores identified within 400 m of the site. The closest groundwater bores are more than 400 m away to the east and north-east and lie on the opposite side of a north-south trending ridgeline along which Old Northern Road is located. The bore data indicates groundwater depths of between 10 m and 15 m, although the data from these bores is unlikely to represent the conditions below Site B.

4. **Previous Investigations**

4.1 Investigation Details

Since 1972, DP has undertaken several investigations for multiple projects across the greater Castle Towers Shopping Centre and adjoining QIC-owned sites. A list of the more recent DP geotechnical investigations which included data from or near the Site B area is presented below.

Project No.	Deep Cored Boreholes	Shallow Augered Boreholes	Test Pits	Date
43863	108, 110, 111, 112, 113, 114, 115, 116			Apr 2006
43863A		208, 209, 210, 211, 212, 213, 214		Apr 2006
84335.00	401, 402, 404, 405	P1, P2, P3, P4, P5, P6		June-July 2014
84335.02	501, 502, 503, 504, 523	TP1, TP2, TP3		Mar-Jun 2015
84335.05			TP13, TP14, TP15, TP16, TP17	Dec 2015
84335.14	901, 902, 903	904, 905	WTP1 to WTP12	Mar-Apr 2022

 Table 1: Previous Investigations undertaken on or near Site B

A groundwater monitoring well was installed in BH404 and a data logger set up to record groundwater levels on a twice daily basis between July 2014 and March 2016.

The approximate locations of the tests are shown on Drawing 2 in Appendix C, and copies of the original logs and core photographs are included in Appendix D as follows:

- Appendix D1 Deep cored boreholes
- Appendix D2 Shallow augered boreholes
- Appendix D3 Test Pits

4.2 Geotechnical Units

In the previous investigation reports a standard terminology was used to define the soil and rock units identified in the area. For this assessment all the logs and core photos from the previous investigations in the Site B area were reviewed again and the terminology modified slightly to suit the rocks found on Site B, while remaining generally consistent with the previous reports for the overall area.

Unit	Typical Description	Typical Core Photograph
1	Fill, soils and extremely weathered rock Pavement layers, fill, residual clays and extremely low strength bedrock.	3 - SASTAE HILL BAUTULE 43865 STAST 31-1 Lun Social Control of Con
2a	Highly to moderately weathered laminite or siltstone Variable in strength ranging from very low to medium strength, including some high strength bands, shaly clay and iron cemented layers. Fragmented to highly fractured.	
2b	Moderately to slightly weathered laminite or siltstone Mostly medium to high strength but with occasional lower and higher strength bands. Variable in strength ranging from extremely low to medium strength, including some high strength bands, shaly clay and iron cemented layers, Fractured to slightly fractured. Joints generally dip at 35 to 80 degrees with a high proportion dipping between 55 and 80 degrees.	

Table 2: Interpreted Geotechnical Units

Unit	Typical Description	Typical Core Photograph
3	Fresh stained to fresh laminite	
	High strength, light and dark grey laminite with some medium strength bands,	S. The second state of the
	Fresh stained to fresh,	2.
	Slightly fractured to unbroken,	10
	Joints generally dip at 35 to 80 degrees with a high proportion dipping between 55 and 80 degrees.	
4	Fresh black siltstone	
	Medium to high strength, dark grey and black siltstone	
	Fresh and fresh stained.	7.
	Slightly fractured to unbroken.	8
	Joints dip at 20 to 90 degrees with a significant proportion dipping between 45 and 90 degrees.	9. CO 19.
	This unit is also fractured to highly fractured at some bore locations.	
5a	Mittagong Formation	
	Irregularly interbedded fine grained light grey sandstone and dark grey siltstone	
	High and very high strength.	
	Fresh with some slightly weathered bands.	
	Slightly fractured to unbroken.	
5b	Hawkesbury Sandstone	
	Medium and coarse grained, medium and high strength quartz sandstone.	
	Fresh with some slightly weathered bands.	23 24 24
	Slightly fractured to unbroken	

4.3 Interpreted Depths and Levels of Units

The interpreted depths below ground level and RLs to the top of each of the above units are summarised in Tables 3 and 4. It should be noted that there is often a gradational change between strata rather than a hard boundary, so these interpreted depths and levels are approximate only. Also, not all units are present in all bores. This may be due to faulting but is more likely due to the inherent variability of the sedimentary rocks.

Dere Ne	Depth to Top of Unit (m)							
Bore No.	Unit 1	Unit 2a	Unit 2b	Unit 3	Unit 4	Unit 5a	Unit 5b	
43863.00 - 20	006 Investiga	tion						
108	0	1.8	4.5	6.4	10.9	>13.9	-	
110	0	2.6	-	-	9.0	9.9	15.8	
111	0	4.6	5.6	6.8	9.3	13.9	>15	
112	0	3.0	6.2	-	7.8	11.5	>15	
113	0	1.5	5.2	-	8.3	12.7	>15	
114	0	7.1	-	-	-	7.1	12.3	
115	0	4.7	-	8.0	-	9.4	>11	
116	0	3.5	6.0	7.1	-	8.3	>9	
84335.00 - 20	014 Stage 1 I	Investigation						
401	0	2.5	3.7	-	6.4	>10	-	
402	0	1.5	5.8	-	6.8	11.8	>14	
404	0	-	3.3	6.5	11.6	>15.9	-	
405	0	1.6	4.0	6.5	9.8	14.4	>16	
84335.02 - 20	015 Stage 2 I	Investigation						
501	0	2.6	4.8	6.8	9.9	13.5	17.6	
502	0	3.5	5.5	-	8.1	13.7	19.3	
503	0	2.8	4.1	6.2	11.9	15.4	19.5	
504	0	-	1.5	7.3	8.8	13.0	19.1	
523	0	1.9	5.3	-	8.1	11.4	17.8	
84335.14 - 2	022 Woodwa	ard Leisure C	entre Investi	gation				
901	0	1.5	5.0	8.3	-	12.3	>13	
902	0	4.6	-	-	-	6.8	>10	
903	0	4.1	5.1	7.2	-	8.2	>9	

Table 3: Summary of Interpreted Strata Depths from the deep cored boreholes

Table 4: Summary of Interpreted Strata Levels from the deep cored boreholes

Bore No.	RL to Top of Unit (m AHD)						
Bore NO.	Unit 1	Unit 2a	Unit 2b	Unit 3	Unit 4	Unit 5a	Unit 5b
43863.00 - 20	006 Investiga	ition					
108	133.2	131.4	128.7	126.8	122.3	<119	-
110	130.6	128.0	-	-	121.6	120.7	114.8
111	132.4	127.8	126.8	125.6	123.1	118.5	<117
112	128.4	125.4	122.2	-	120.6	116.9	<113
113	129.3	127.8	124.1	-	121.0	116.6	<114
114	124.4	117.3	-	-	-	117.3	112.1
115	118.1	113.4	-	110.1	-	108.7	<107
116	118.7	115.2	112.7	111.6	-	110.4	<109

Dere Ne	RL to Top of Unit (m AHD)							
Bore No.	Unit 1	Unit 2a	Unit 2b	Unit 3	Unit 4	Unit 5a	Unit 5b	
84335.00 - 20	014 Stage 1	Investigation						
401	132.0	129.5	128.3	-	125.6	<122	-	
402	131.3	129.8	125.5	-	124.5	119.5	<117	
404	133.4	-	130.1	126.9	121.8	<117	-	
405	130.7	129.1	126.7	124.2	120.9	116.3	<115	
84335.02 - 20	015 Stage 2	Investigation						
501	132.6	130.0	127.8	125.8	122.7	119.1	115.0	
502	127.1	123.6	121.6	-	119.0	113.4	107.8	
503	133.2	130.4	129.1	127.0	121.3	117.8	113.7	
504	129.3	-	127.8	122.0	120.5	116.3	110.2	
523	128.3	126.4	123.0	-	120.2	116.9	110.5	
84335.14 – 2	022 Woodwa	ard Leisure C	entre Investi	gation				
901	128.4	126.9	123.4	120.1	-	116.1	<115	
902	123.5	118.9	-	-	-	116.7	<114	
903	122.4	118.3	117.3	115.2	-	114.2	<113	

In terms of fracturing, typically the Unit 2a was fragmented to highly fractured, while the less weathered Unit 2b was more typically fractured to slightly fractured. In both cases, and also for Units 3 and 4, there were often moderately steeply dipping joints at 35 to 60 degrees below horizontal. These joints were commonly described as planar and smooth and, if they are continuous, have the potential to form large unstable wedges in vertical cuts.

The depth of fracturing varied between boreholes. In most boreholes the rock was typically highly fractured down to depths of 7-8 m below ground level, however in BH401 and BH404 there was very little fracturing for the full depth of drilling, while in BH113 all the cored rock was fractured and highly fractured, with a fault zone identified at a depth of about 14 m. Other evidence of faulting was identified in BH501 at about 17.1 m to 18.1 m depth.

All test pits excavated as part of the investigations were terminated within Unit 1 materials or on top of Unit 2a.

4.4 Groundwater

No free groundwater was observed in any of the boreholes during auger drilling. The use of water as a drilling fluid during diamond core drilling of the bedrock precluded any further observations of groundwater inflow. Previous investigations in this area and on adjoining sites have indicated that permanent groundwater levels probably lie several metres below the base of the proposed lowest basement floor level.

Monitoring of groundwater level in BH404 between July 2014 and March 2016 typically gave levels of RL 128 to RL 129 (4-5 m below ground level) and immediately after periods of heavy rainfall there were short sharp peaks to levels of about RL 131. These results suggest that in this well there is a direct

connection to surface water, either by inadequate sealing of the well and cap or through highly permeable defects in the soil or rock.

Groundwater conditions are typically affected by factors such as soil permeability and seasonal weather conditions and will vary with time.

5. Proposed Development

Site B is divided into Lots A to F (see Figure 2). The proposed development on each of these lots will comprise two or three multistorey buildings constructed over basements on each lot which range in depth from single level to four levels.

Figure 2: Proposed Lots A to F

Preliminary architectural drawings for the development were prepared by the project architects Clarke Hopkins Clarke, dated March 2022. A selection of site and floor plans, elevations and sections from the full architectural drawing set are presented in Appendix B and an indicative section is shown in Figure 3.

Figure 3: Indicative section through site

Preliminary plans indicate the following bulk excavation levels for each of the lots:

- Lot A RL 121 m
- Lot B RL 116 m
- Lot C RL 113 m
- Lot D RL 121 m
- Lot E RL 113 m
- Lot F RL 121 m

With reference to the existing ground levels over the site, which range from about RL 134 m near the southern corner to about RL 115 m at the northern corner, excavation will be required for the developments on all the lots, with maximum depths of about 13-14 m in the southern corner of the site.

Existing tunnels for the Sydney Metro North West pass below the southern portion of the site (as sketched on Figure 2). It is understood that the top of the Sydney Metro North West rail reserve lies at about RL 119.7 m, which is about 1 m below the proposed basement levels (of RL 121 m) on this part of the site. The effects of the excavation and the application of building loads over the rail reserve will need to be separately analysed in detail as Sydney Metro and/or TfNSW will require a geotechnical impact assessment to be undertaken for any proposed development within the rail tunnel reserve.

6. Comments

6.1 Interpreted Geological Model

The depths and levels of the interpreted geotechnical units at each of the boreholes are presented in Tables 3 and 4. As indicated, there is some variability between boreholes, and not all units are present at all locations, but in very general terms the subsurface profile can be summarised as follows:

		Average	RL to top of unit (m)			
Unit	Description	thickness (m)	Average	Highest	Lowest	
1	Fill, soil and extremely weathered rock	3.1	128.4	133.4	118.1	
2a	HW-MW, fractured laminite/siltstone	1.6	125.0	131.4	113.4	
2b	MW-SW, M-H laminite/siltstone	2.3	124.7	130.1	112.7	
3	Fr, M-H laminite	2.1	121.4	127.0	110.1	
4	Fr, M black siltstone	2.3	121.8	125.6	119.0	
5a	Mittagong Formation – variably interbedded fine-grained sandstone and siltstone, typically Fr and H	5.9	116.2	120.7	108.7	
5b	Hawkesbury Sandstone – medium to coarse grained quartz sandstone, typically SW and H	-	112.0	115.0	107.8	

Table 5: Summary of Interpreted profile

Notes:

laminite = finely interbedded dark grey siltstone and light grey, fine grained sandstoneHW = Highly weatheredMW = Moderately weatheredSW = Slightly weatheredFr = Fresh (unweathered)M = Medium strengthH = High strength

Indications of faults were identified in some boreholes although the available evidence suggests the faults are mostly minor. It must be assumed, however, that some faulting will be encountered in the sides of the proposed bulk excavations and that additional geotechnical inspection and assessment will be required during site excavation. It is likely that some areas of the proposed excavation will require additional localised support through the installation of additional rock bolts and shotcrete.

Knowledge gained from multiple investigations across the greater Castle Towers Shopping Centre and adjoining QIC-owned sites indicates that groundwater levels lie well below the proposed excavation depths. It is therefore considered likely that drained basements will be appropriate for the site, but additional specific groundwater monitoring will be required during the detailed design investigations in order to obtain site specific information which can be provided to the relevant approval authorities.

Due to the variability in the strata and their levels across the site, specific geotechnical reports will need to be prepared for each site and additional investigations will be required for those lots where there is currently only limited information. The following advice provides generalised information for preliminary planning purposes only.

6.2 Excavation Conditions

The proposed excavations are expected to be up to 13-14 m deep on the higher parts of the site. With reference to the recorded depths of each unit at the deep cored boreholes given in Table 3, it is likely that the deeper excavations will penetrate through Units 1 to 4 and probably into the top of Unit 5a.

Excavation within the pavements, fill, soil profile and extremely to highly weathered, fractured to fragmented rock (i.e. Units 1 and 2a) should be readily achieved by conventional earthmoving equipment such as hydraulic excavators. Some light to medium ripping using a tyne, or the use of rock hammers may be required for layers of stronger rock that are interbedded within Unit 2a.

Excavation within medium and high strength bedrock (i.e. Unit 2b, Unit 3, Unit 4 and Unit 5a) will require medium to heavy ripping, depending on the defect frequency and spacing. The use of large hydraulic rock breakers may be required in areas where very high strength bands or medium strength bedrock with widely spaced fracturing is present. The use of hydraulic rock breakers and possibly a rock saw is anticipated for excavation of footings and trenches in these units.

Any excavated material to be removed from site should be tested for contaminants to allow Waste Classification Assessment in accordance with current NSW EPA requirements.

The results of groundwater monitoring in the area indicate the presence of groundwater at depths of between 2 m and 10 m below existing ground surface levels at the monitoring bore locations. Reference to the borehole log descriptions for these bores indicates that the groundwater surface is typically positioned within the more fractured Unit 2b materials near the contact with Unit 3.

Based on the relatively minor and short term fluctuations of the groundwater levels with rainfall, it is considered that the measured groundwater is primarily perched ephemeral water that will cause intermittent but regular low to moderate seepages that can be adequately managed through standard 'sump-and-pump' methods (or drains, subject to available discharge points). Seepage flows are likely to occur mainly along narrow defects within the bedrock and thus relatively small changes in water volumes have substantial but temporary influences on the groundwater levels.

6.3 Vibrations

Excavation of medium and high strength rock using rock hammers will generate vibrations which could potentially damage nearby structures or cause discomfort to residents, therefore it will be necessary to adopt appropriate construction methodologies and equipment to limit vibrations to acceptable levels at adjoining building locations.

Using rock saws or milling heads attached to excavators usually reduces the levels of vibrations, and it may be possible to cut a perimeter trench around excavations in rock using a rock saw to limit the vibrations transmitted to the surrounding ground.

The level of acceptable vibration is dependent on various factors including the type of building or structure (e.g. reinforced concrete, brick, brick-veneer, etc.), its structural condition, the frequency range of vibrations produced by the excavation plant, the natural frequency of the building and the vibration transmitting medium.

Ground vibration can be strongly perceptible to humans at levels above 2.5 mm/s peak particle velocity (PPVi). This is generally much lower than the vibration levels required to cause structural damage to buildings. The Australian Standard AS2670.2-1990 *Evaluation of human exposure to whole-body vibrations – continuous and shock induced vibrations in buildings (1-80 Hz)* indicates an acceptable day time limit of 8 mm/s PPVi for human comfort.

Based on the experience of DP and with reference to AS2670, it is suggested that a maximum PPVi of 8 mm/s (applicable at the foundation level of existing buildings) be adopted for both architectural and human comfort considerations, although this vibration limit may need to be reduced if there are sensitive structures or equipment in the area.

Subject to the conditions of the adjoining sites at the time of rock excavation, a vibration trial may be considered at the start of excavation to determine if smaller or different types of excavation equipment should be used for bulk or detailed excavations.

6.4 Excavation Support

6.4.1 General

Vertical excavations for the basement levels will require both temporary shoring during construction and permanent retaining wall support as part of the final structures.

Given the highly variable material strength within Units 1, 2a and 2b, and the fractured and jointed nature of the rock, it is recommended that the temporary and permanent support is extended to, and below, the base of Unit 2b.

Vertical excavation within the medium to very high strength rock of Units 3, 4 and 5 will require regular inspections of the face by an experienced engineering geologist or geotechnical engineer for every 1.5 m depth of excavation. Allowance should be made for the rock bolting of any adversely dipping joints and/or faults detected during the geotechnical inspections.

The design of all temporary and permanent retaining walls should consider the possibility of mass instability due to 'mobilised wedges' sliding along inclined joints or faults, particularly within the less weathered bedrock. In addition, an allowance should be made for the shotcreting (with reinforcing mesh and galvanised steel dowels) of all siltstone, laminite and shale faces regardless of rock strength, as well as all clay seams and lower strength rock bands, to prevent the otherwise inevitable weathering and progressive degradation of this type of rock, when exposed over the longer term.

Detailed on-going inspection of the excavated rock faces will be required to check for the presence of laterally continuous moderately dipping (inclined) joints that are aligned parallel or near-parallel to the excavation perimeter. Although the probability of such joints is low, if present, they can result in significant instability that can lead to large scale failures of inadequately supported excavations. Appropriate protection and support may include the incorporation of large shear walls and structural propping via floor slabs or the installation of permanent anchors on a grid basis across the excavation face.

Soldier pile walls with reinforced shotcrete infill panels are likely to be suitable options for temporary shoring support. Where the soldier piles extend to below the base of the excavation, an appropriately

determined additional pile socket depth (not less than two pile diameters plus the depth of any adjoining existing or proposed footing excavation, service trench or similar), can be used for lateral support of the pile toe. Additional and higher level lateral support can be provided by either the cantilever action of the soldier pile, where excavation depths are limited, or by regularly vertically spaced 'tie-back' ground anchors.

Where the soldier piles do not extend to the base of the excavation, at least two rows of temporary ground anchors, together with walers, will be required to adequately support the excavation face and 'lock-in' the soldier pile. The soldier piles should extend a minimum distance of 1 m or two pile diameters, whichever is greatest, into medium or high strength Unit 3 or Unit 4 rock immediately below the Unit 2b material. The installation of toe anchors is considered necessary given the fractured nature of Unit 2b and the possibility of adversely aligned joints and the potential for unstable rock wedges to develop during excavation following soldier piles should be carried out to check for the presence of adversely oriented defects. If present, such defects will need to be rectified by installing additional rock bolts and/or anchors, as appropriately determined at that time.

Approval should be sought from The Hills Shire Council (Council), Sydney Metro Authority (SMA) and adjoining property owners, where temporary or permanent ground / rock anchors extend onto neighbouring properties, roads or public access areas. Where possible, the proposed building floor slabs should be used to provide long-term permanent support for all basement retaining walls.

Excavation of a soldier pile / infill panel wall system should proceed in vertical lifts of no greater than 1.5 m. At the completion of each excavation lift, reinforced infill panels should be constructed. At no stage should progressive vertical excavation proceed beyond 2 m without the infill panel support being constructed. It is possible that adverse jointing may cause localised instability in the exposed material between the soldier piles which may require additional remedial measures prior to shotcreting.

Appropriate drainage will need to be provided behind the retaining walls. Strip drains should be installed behind the shotcrete of the soldier pile / infill panel wall system at maximum 2 m centres.

An allowance should be made for the shotcreting (i.e. with reinforcing mesh and galvanised steel dowels) of all siltstone and laminite faces regardless of rock strength, as well as all clay seams and lower strength rock bands, to prevent the otherwise inevitable weathering and progressive degradation of this type of rock, when exposed over the longer term.

Within areas that are potentially affected by faults or deeply weathered soil/rock profiles, it is recommended that an experienced geotechnical engineer or engineering geologist is present on site full-time during excavation and the installation of retaining structures to assess the founding conditions and determine if the shoring requires deepening.

It will be necessary to identify the founding conditions for any existing structural footing immediately adjoining or close to the excavation perimeter. Where the shoring system is required to support high level adjoining footings or other similar structural loads, a soldier pile/infill panel wall system is generally not recommended as there is a high risk of the footings being undermined during the period between staged excavation and installation of the temporary support. In such cases, an anchored contiguous pile wall would generally be more appropriate.

6.4.2 Temporary Batters

The following maximum slopes are recommended for any temporary excavation batters.

Unit	Description	Maximum Temporary Batter
1	Fill, soil and extremely weathered rock	1H :1V
2a	HW-MW, fractured laminite/siltstone	1H :1V
2b	MW-SW, M-H laminite/siltstone	1H :1V
3	Fr, M-H laminite	0.5H :1V
4	Fr, M black siltstone	0.5H :1V
5a	Mittagong Formation – variably interbedded fine-grained sandstone and siltstone, typically Fr and H	Vertical #
5b	Hawkesbury Sandstone – medium to coarse grained quartz sandstone, typically SW and H	Vertical #

 Table 6: Maximum Recommended Temporary Batter Slopes

Notes: # subject to inspection by experienced geotechnical personnel to identify any adversely oriented defects

In Units 2a and 2b there are numerous moderately dipping joints (typically at 45 degrees from horizontal) which will potentially cause vertical excavations to fail and accordingly maximum slopes of 1H:1V are recommended for these units. In Units 3 and 4 the frequency of these adversely oriented joints is less but still possible, therefore slightly steeper temporary slopes are suggested. In Units 5a and 5b adverse defects are much less likely, but still possible, so it is suggested that vertical excavations could be used, provided that they are regularly inspected during excavation by experienced geotechnical personnel.

6.4.3 Design of Lateral Support

The need to provide shoring and permanent retaining wall support to Units 1, 2a and 2b., but not to Units 3 to 5 (subject to geotechnical inspection and confirmation during construction) means that for some of the deeper excavations the shoring walls could potentially be terminated above the base of the excavation. Lateral support of such structures will require two or more rows of temporary anchors, which will ultimately be replaced in the permanent case by the bracing action of two or more floor slabs within the new building. If, however, the perimeter shoring piles are required to carry vertical structural compression loads then they will need to found below the base of the excavation and probably to a greater socket depth. This will require the drilling of end bearing piles through high strength rock.

The design of temporary and permanent shoring walls should consider loads acting on the walls due to both lateral earth pressures due to soils and weathered rock and potential unstable 'mobilised wedges' caused by a combination of adversely oriented defects within the less weathered rock. Design should adopt the more conservative approach or, as a minimum, include provision for both design approaches. For the design for lateral earth pressures, it is suggested that a simplified, and potentially conservative, lateral earth pressure distribution can be adopted for design of multi-propped temporary and permanent walls. A more refined analysis of the wall, that could account for the soil-structure interaction during

progressive excavation and anchoring stages, would require detailed modelling using computer programs such as WALLAP or FLAC.

For a shoring wall that is anchored or propped at multiple levels, the preliminary design for lateral earth pressures could be based on the following, where 'H' is equal to the depth of the excavation to be retained in metres.

- Over the depth of Unit 1 and 2a, adopt a uniform lateral earth pressure distribution of 4H during construction and 5H for the permanent case.
- Over the depth of Unit 2b, adopt a uniform lateral earth pressure of 4H for both construction and the permanent case. This may be conservative at some locations where the rock is of higher strength. Given the highly variably nature of the rock strength in Unit 2b, however, it is not possible to reduce the level of conservatism and hence design should adopt the lesser rock strength case.
- Where there are existing footings adjacent to or close to the crest of the proposed shoring / wall, and where wall movement needs to be reduced as far as practical to limit distress to adjoining footings / structures or in-ground services / utilities, then adopt a uniform lateral earth pressure distribution of 6H for the full height of Units 1, 2a and 2b for construction, reducing to 5H for the permanent case.

The calculation of lateral earth pressures should also consider any surcharge loads resulting from adjoining structures, services, pavements, construction plant or similar.

In places, where excavation depths are limited and moderate ground deflections behind the wall are acceptable, it may be possible to adopt cantilevered or single-anchored walls, which could be designed on the basis of the conventional triangular lateral earth pressure distribution, using the following parameters listed in Table 7.

		Active Earth Pres	ssure Coefficient	Bulk Unit
Unit	Description	Short Term / Temporary	Long term / Permanent	Weight (kN/m³)
1	Fill, soil and extremely weathered rock	0.25	0.3	20
2a	HW-MW, fractured laminite/siltstone	0.2	0.25	21
2b	MW-SW, M-H laminite/siltstone	0.15	0.2	22
3	Fr, M-H laminite	10 kPa uniform ¹	10 kPa uniform ¹	24
4	Fr, M black siltstone	10 kPa uniform ¹	10 kPa uniform ¹	24
5a	Mittagong Formation – variably interbedded fine-grained sandstone and siltstone, typically Fr and H	0.0 ¹	0.0 ¹	24
5b	Hawkesbury Sandstone – medium to coarse grained quartz sandstone, typically SW and H	0.0 ¹	0.0 ¹	24

Table 7:	Suggested Active	Earth Pressure	Coefficients and	Bulk Unit Weights
----------	-------------------------	-----------------------	-------------------------	-------------------

Note: 1. A uniform pressure of 10 kPa should be adopted to account for potential defects but subject to inspection and possible revision of lateral restraint, if appropriate.

Where existing footings are present close to the crest of wall, cantilevered walls should be avoided to mitigate the risk of damage due to lateral ground movements. To limit lateral ground movements, design should adopt a coefficient of 'at rest' earth pressure ($K_0 = 0.5$).

The socketing of the perimeter piles into rock below bulk excavation level will allow the use of passive pressure in the shoring design. Such sockets should extend a minimum of two pile diameters below the bulk excavation level, with the upper pile diameter depth ignored in the passive pressure calculation. Care must be taken not to over excavate the rock (i.e. by rock sawing or excavation of trenches) below bulk excavation level within the vicinity of pile toes socketed and designed for passive pressure. Below a depth of one pile diameter the following ultimate passive pressures listed in Table 8 are suggested, for which an appropriate factor of safety should be applied to limit wall movement.

Unit	Description	Passive Earth Pressure (kPa)
1	Fill, soil and extremely weathered rock	Nil
2a	HW-MW, fractured laminite/siltstone	400
2b	MW-SW, M-H laminite/siltstone	1000
3	Fr, M-H laminite	4000
4	Fr, M black siltstone	4000
5a	Mittagong Formation – variably interbedded fine-grained sandstone and siltstone, typically Fr and H	6000
5b	Hawkesbury Sandstone – medium to coarse grained quartz sandstone, typically SW and H	6000

Table 8: Suggested Ultimate Passive Earth Pressures

Progressive geotechnical inspection of the excavations is important due to the possible presence of faults or steeply dipping joints across the site. They need to be identified as soon as possible during excavation to determine whether the installation of additional anchors is required.

6.4.4 For Mobilised Wedge Loading

The design of the temporary shoring system and the long-term basement walls should also cater for the possibility that a continuous, planar moderately-dipping joint or fault will 'daylight' near the base of the excavation, leading to large wedges of rock becoming unstable during or after bulk excavation. There have been numerous reported large wedge failures or 'near failures' in excavations in the Ashfield Shale formation in Sydney, as described in Andrews & Braybrooke (2001).

For temporary support of large excavations in Ashfield Shale sufficient rock bolting and anchoring is required to prevent movement or sliding along these continuous defects. Anchorages should be designed to cater for a possible mobilised wedge that would give rise to a total anchor force of $4.2*h^2$ (kN/m) along the length of the wall, where h is the full height of the proposed excavation (in metres). This figure is based on an anchor inclination of 10° below the horizontal plane and the following assumed material and strength parameters:

• Planar failure on a joint/fault dipping at 45°, striking parallel to and 'day-lighting' at the toe of the excavation.

- Shear strength at interface: $\phi = 25^{\circ}$, c = 0 kPa.
- Bulk unit weight of shale wedge (γ) = 21 kN/m³

The calculation of the 4.2*h² total anchor force (per metre run of wall) is based on static analysis, and follows the process set out in Hoek & Bray (1981).

A factor of safety of 1.0 against sliding may be adopted for this design approach given that it assumes an unlikely combination of adverse factors, in particular that the key defect would run the full length and height of the excavation.

The 10° anchor inclination is considered to be the flattest angle that can realistically be used which will allow relatively easy anchor installation and grouting. Should there be a requirement to increase the angle of installation of the anchors then, to keep a similar factor of safety, the anchor capacity would need to be increased.

Inspection of the cut faces during the excavation phase is critical and should be carried out by an experienced geotechnical professional to ensure the adequacy of design. The mapping of all actual joints and faults will also allow the recalculation of the horizontal force required to restrain the actual joint wedges present for final support design. It is noted that this approach to permanent support design will however require considerable interaction between the Structural and Geotechnical Engineer during construction.

6.4.5 Ground Anchors

Temporary ground anchors may be used for the lateral restraint of shoring walls and to support potential unstable wedges until such time that the walls are permanently strutted by the building floor slabs. The anchors should preferably have their bond length within rock of Unit 3 or better.

The design of temporary and permanent ground anchors for the support of piled wall systems may be carried out on the basis of the ultimate bond stresses given in Table 9.

Unit	Description	Ultimate Bond Stress (kPa)
2a and 2b	HW-SW, fractured laminite/siltstone	200
3, 4, 5a and 5b	Medium strength or better bedrock	1000

 Table 9: Bond Stresses for Anchor Design

Ground anchors should be designed with a minimum 3 m free length that extends beyond an imaginary line drawn upwards at an angle of 45° from the toe of the wall. The above parameters assume that the anchor holes are clean and thoroughly flushed, with grouting and other installation procedures carried out carefully and in accordance with normal good anchoring practice.

6.4.6 Excavation Induced Ground Movements

Deep excavations within slightly fractured or unbroken bedrock often experience some horizontal movement of the excavation face due to stress relief effects. Release of the broad, 'locked-in' earth stresses will generally cause horizontal movements along the rock bedding surfaces and defects. It is

generally not practical to try to restrain the large, broad scale movements associated with stress relief as the forces are very large.

As preliminary guidance, at the midpoint of the crest of a deep excavated face, stress relief may cause a horizontal movement in the order of 1 to 2 mm/m depth of excavation. The amount of horizontal movement diminishes along the crest away from the midpoint, and down the excavated face away from the crest. The movement would be expected to occur progressively during the excavation and should be completed shortly after the completion of excavation.

To reduce the likelihood of damage occurring in adjoining structures and services due to horizontal ground movements in the near surface soils, it is recommended that the shoring walls are designed so as to limit lateral ground movements at the ground surface to no more than 10 mm. This limit will need to be verified following an assessment of sensitive elements within the vicinity of the excavation (e.g. buried assets and adjoining structures).

6.5 Footings

Where possible, structures should be founded on consistent materials to reduce the risk of differential settlement. It is recommended that the major building structures should be founded on rocks of Unit 3, 4, 5a or 5b. These materials may be exposed at the base of deeper excavations, in which case pad or strip footings may be adopted, or otherwise bored piers will be required to reach suitable founding strata.

Preliminary design of footings may be based on the allowable and ultimate bearing pressures outlined in Table 10.

11	Description	End Bear	ing (kPa)	Shaft Adhesion (kPa)		
Unit	Description	Allowable	Ultimate	Allowable	Ultimate	
1	Fill, soil and extremely weathered rock	150	500	15	25	
2a	HW-MW, fractured laminite/siltstone	700	3000	70	100	
2b	MW-SW, M-H laminite/siltstone	1000	3500	100	150	
3	Fr, M-H laminite	3500	30,000	350	400	
4	Fr, M black siltstone	3500	30,000	350	400	
5a	Mittagong Formation – variably interbedded fine-grained sandstone and siltstone, typically Fr and H	5000	40,000	500	600	
5b	Hawkesbury Sandstone – medium to coarse grained quartz sandstone, typically SW and H	6000	60,000	600	1500	

Table 10: Suggested Footing Design Parameters

Reduced bearing pressures may apply for foundations affected by faults, although such reductions would need to be determined after a review of the specific site conditions.

Tension piles, if required, should be designed based on 70% of the above suggested design parameters and due consideration should be given to cone 'pull-out' failure mechanisms, where applicable. As a guide, the designer should consider both a 90 degree 'included' cone angle extending up from the top of the rock socket and a 60 degree 'included' cone angle extending up from the toe of the pile.

The parameters given above assume that the footing excavations (e.g. pads or piles) are clean and free of loose debris, with pile sockets free of smear and adequately roughened immediately prior to the placement of concrete. It is recommended that all load bearing foundations should be inspected by an experienced geotechnical engineer or engineering geologist and that one-third of all pad footings founding on Units 4 or 5 be spoon tested to test for the presence of seams of weak material. Within the faulted zones, extensions of the footing depths are anticipated and should be allowed for within the design. Pile drilling should be undertaken with full-time geotechnical presence to ensure that an appropriate bearing stratum is reached and that adequate base and shaft cleaning undertaken.

Pads and piles proportioned for the allowable parameters would not be expected to settle more than 1% of their footing width.

For foundations that are positioned close to the edge of unsupported excavations (i.e. within a distance from the edge of the excavation equal to the excavation height) the adopted design bearing pressure should be halved. Where such excavations are supported by shoring/retaining walls, the wall designer must account for the additional surcharge load applied by the footing. Similarly, when calculating the theoretical lateral movement for shoring/retaining walls, the calculations must include the surcharge load associated within nearby footings.

6.6 Effect of Development on Metro Tunnels

The existing Sydney Metro North West tunnels pass beneath the southern part of Site B, beneath the footprints of development on Lots A, D and F. The potential impacts of the proposed development on the tunnels will need to be assessed in detail in order to provide a geotechnical impact assessment for each development. This assessment will require detailed numerical modelling and preparation of separate reports for submission to Sydney Metro and/or TfNSW.

6.7 Earthquake Loading

Given that most of the site is underlain by more than 3 m of residual soil and highly weathered rock, the site is classified as a ' C_e – Shallow Soil Site' site in accordance with the Earthquake Loading Standard AS1170.4-2007.

6.8 Pavement Design

Laboratory CBR tests undertaken on samples obtained from the natural soil profile in the area typically indicated CBR values ranging between 3% and 6%. To allow for variability in the soils, it is recommended that a subgrade CBR value of 3% is adopted for preliminary design of new pavements.

7. Limitations

Douglas Partners (DP) has prepared this report for this project at the corner of Showground Road and Kentwell Avenue, Castle Hill in accordance with DP's fee proposal (Ref. DP's email dated 18 March 2022) and the acceptance received on 6 April 2022 from David Radford of Essence Project Management Pty ltd, on behalf of QIC Ltd. The work was carried out under the agreed terms of the Consultancy Agreement Douglas Partners between QIC and (Contract No. aibb A0131404478v12 120473187, dated 11 November 2015). This report is provided for the exclusive use of QIC Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during several previous investigations by DP on and nearby the site. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Architectural Drawings

Castle towers - site bHopkins
ayisiD6-14 CASTLE STREET, CASTLE HILL NSW 2154
200121

www.chc.com.au | studio@chc.com.au | 03 9419 4340 | NSW Nominated Architect: Jordan Curran (10259)

www.chc.com.au | studio@chc.com.au | 03 9419 4340 | NSW Nominated Architect: Jordan Curran (10259)

		J

Clarke
Hopkins
ayrisiOCASTLE TOWERS - SITE B
6-14 CASTLE STREET, CASTLE HILL NSW 2154
200121

www.chc.com.au | studio@chc.com.au | 03 9419 4340 | NSW Nominated Architect: Jordan Curran (10259)

TOTAL Site GFA FSR No. Apartments 1561

40266 sqm 147228 sqm 3.66

Lot D

5500 sqm Site Area 42204 sqm GFA 7.67 FSR 20 Height (levels) No. Apartments 441

Lot A

Site Area GFA FSR Height (levels) No. Apartments 194

4000 sqm 20896 sqm 5.22 12

Lot B

Site Area GFA FSR Height (levels) No. Apartments 241

4292 sqm 20960 sqm 4.88 12

MASSING VIEW 1

28 FEBRUARY 2021

Castle Towers - Site	B						28.02.22	
Efficiency Average Apartment size	e (m2)	0.80				Site Area FSR GFA 147228	40266 3.66 Apartments 1561	
.ot A		5.22	:1 FSR	lax Height 12 Levels	: 39m	Site Area 4000		
Building No.	Levels	Use	GBA per level	No. Levels	GBA	GFA m2	Apartment No.	
Podium	1 to 3	Commercial	1700	3	5100	4080		
Podium	1 to 3	Residential	1100	3	3300	2640	30	
	Sub Total			3	8400	6720	30	
1	4 to 8	Residential	1170	5	5850	4680	54	
	9to 12	Residential	860	4	3440	2752	32	
	Sub Total			12	9290	7432	86	
2	4 to 8	Residential	1170	5	5850	4680	54	
2	9 to 11	Residential	860	3	2580	2064	24	
	Sub Total			10	8430	6744	78	
	Total					20896	194	

Lot B		4.88	:1 FSR	lax Height 12 Levels	: 39m	Site Area 4292		
Building No.	Levels	Use	GBA per level	No. Levels	GBA	GFA m2	Apartment No.	
Podium	1 to 3	Residential	2500	3	7500	6000	69	
	Sub Total			3.0	7500	6000	69	
	3 to 8	Residential	1150	6	6900	5520	64	
1	9 to 10	Residential	850	2	1700	1360	16	
	11 to 12	Residential	750	1	750	600	7	
	Sub Total			12	9350	7480	86	
	3 to 8	Residential	1150	6	6900	5520	64	
2	9 to 10	Residential	850	2	1700	1360	16	
	11 to 12	Residential	750	1	750	600	7	
	Sub Total			12	9350	7480	86	
	Total					20960	241	

lot C		4.87	:1 FSR	lax Height 12 Levels	: 39m	Site Area	4499
Building No.	Levels	Use	GBA per level	No. Levels	GBA	GFA m2	Apartment No.
Podium	1 to 2	Residential	2720	3	8160	6528	75
	Sub Total			3	8160	6528	75
	3 to 8	Residential	1200	5	6000	4800	55
1	9 to 10	Residential	900	4	3600	2880	33
	Sub Total			12	9600	7680	88
2	3 to 8	Residential	1200	5	6000	4800	55
2	9 to 12	Residential	900	4	3600	2880	33
	Sub Total			12	9600	7680	88
	Total					21888	252

Lot D		7.67	:1 FSR	lax Height 20 Levels	: 64m	Site Area 5500		
Building No.	Levels	Use	GBA per level	No. Levels	GBA	GFA m2	Apartment No.	
Podium	1 to 3	Commercial	1950	2.5	4875	3900		
Podium	1 to 3	Residential	1700	3	5100	4080	47	
	Sub Total			3	9975	7980	47	
1	3 to 8	Residential	1100	6	6600	5280	61	
1	9 to 16	Residential	900	8	7200	5760	66	
	Sub Total			17	13800	11040	127	
2	3 to 8	Residential	1100	6	6600	5280	61	
2	9 to 18	Residential	900	10	9000	7200	83	
	Sub Total			19	15600	12480	144	
3	3 to 8	Residential	930	6	5580	4464	51	
	9 to 20	Residential	650	12	7800	6240	72	
	Sub Total			21	13380	10704	123	
						42204	441	

Lot E	6.67 :1 FSR		:1 FSR	lax Height 14 Levels : 45m		Site Area 2050		
Building No.	Levels	Use	GBA per level	No. Levels	GBA	GFA m2	Apartment No.	
Podium	1 to 3	Residential	1300	3	3900	3120	36	
	3 to 8	Residential	1200	5	6000	4800	55	
	9 to 14	Residential	1200	6	7200	5760	66	
	Total			14		13680	157	

Lot F		6.10	:1 FSR			Site Area	4526	
Building No.	Levels	Use	GBA per level	No. Levels	GBA	GFA m2	Apartment No.	
Podium	1 to 3	Commercial	1500	3	4500	3600		
Polium	1 to 3	Residential	1000	3	3000	2400	28	
	Sub Total			3	7500	6000	28	
	4 to 8	Residential	1300	5	6500	5200	60	
	9 to 14	Residential	1000	6	6000	4800	55	
Sub Total				14	12500	10000	115	
	4 to 8	Residential	1300	5	6500	5200	60	
	9 to 16	Residential	1000	8	8000	6400	74	
Sub Total				16	14500	11600	133	
Total						27600	276	

Туре	Area	Balcony
1 bed	55	1
2 bed	76	1
2 bed (family)	110	1
3 bed	100	1
3 bed (family)	135	1
Average Apartment s Average Balcony size		

Notes: Typical floorplate efficiency discounting balconies, vertical circulation and service risers GFA Includes all floor area except balconies, vertical circulation and service risers.

Castle towers - site bHopkins
ayisiD6-14 CASTLE STREET, CASTLE HILL NSW 2154
200121

www.chc.com.au | studio@chc.com.au | 03 9419 4340 | NSW Nominated Architect: Jordan Curran (10259)

	Apartment Mix
00	0.2
00	0.4
00	0.2
00	0.1
00	0.1
	87
	10
_	

r	
Carparking	Resi cars required
Rate	
0.5	
0.8	
0.8	
1.3	
1.3	
0.84	1311
Avg. carparking rate	
Commercial cars	405
Total Cars	1717

DEVELOPMENT SCHEDULE

28 FEBRUARY 2021

QIC HATCH RobertsDay

1 2

SECTION 1

SECTION 2

CASTLE ST

www.chc.com.au | studio@chc.com.au | 03 9419 4340 | NSW Nominated Architect: Jordan Curran (10259)

SECTION DIAGRAMS

18 MARCH 2021

SECTION 4

SHOWGROUND RD

SECTION 3

Appendix C

DP Drawings

1. Basemap from Metromap (Dated 22/03/2022)

()	Douglas Partners Geotechnics Environment Groundwater	
	Geotechnics I Environment I Groundwater	

75 100 125 150 175 m 25 50 0

	CLIENT: QIC Pty Ltd		TITLE:	Approximate Test Locations 1972-2022
S	OFFICE: Sydney	DRAWN BY: MG		Site B Development
er	SCALE: 1:3000 @ A3	DATE: 01.06.2022		Castle Street, Castle Hill

LOCALITY MAP

LEGEND Site B 2022_Geotechnical Borehole Locations_84335.14 8 2022_Test Pit Locations_84335.14 Groundwater Well \bigcirc 2015_BH601-BH612_84335.05 2015_BH501-BH523_84335.02 + 2015_TP13-TP17_84335.05 + 2015_TP1-TP12_84335.03 2014_BH401-BH414_84335.00 2014_BH P1-BH P14_84335.00 2006_BH101-BH116_43863 2006_TP208-TP214_43863A 2006_BH201-BH207_43863A 2006_TP A-TP M_43863 2001_TP1-TP3_20438D 1995_BH1-BH21_20438 1995_BH1-BH8_Coffey 1973_BH7-BH24_3852 \bigcirc • 1971_BH1-BH6_3342 PROJECT No: 84335.16 DRAWING No: **REVISION:** 0

Notes: 1. Basemap from Metromap (Dated 22/03/2022)		0 25	5 50	75	100	125 m	
	CLIENT: QIC Pty Ltd			TITLE:	Approx	imate Test Locations	
Douglas Partners	OFFICE: Sydney	DRAWN B	Y: MG		Site B D	Development	
Geotechnics Environment Groundwater	SCALE: 1:1500 @ A3	DATE:	01.06.2022		Castle S	Street, Castle Hill	

REVISION:

0

Appendix D

Results of Previous Boreholes and Test Pits

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

Term	Proportion of fines	Example			
And	Specify	Sand (70%) and Clay (30%)			
Adjective	>12%	Clayey Sand			
With	5 - 12%	Sand with clay			
Trace	0 - 5%	Sand with trace			
		clay			

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example			
	of coarser				
	fraction				
And	Specify	Sand (60%) and			
		Gravel (40%)			
Adjective	>30%	Gravelly Sand			
With	15 - 30%	Sand with gravel			
Trace	0 - 15%	Sand with trace			
		gravel			

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $I_{S(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $I_{S(50)}$. It should be noted that the UCS to $I_{S(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW	cannot be differentia	ated use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections > 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

·-----

Metamorphic Rocks

 >
 >
 >

 >
 >
 >
 >

 +
 +
 +
 +
 +

 ·
 ·
 ·
 ·
 ·

 ·
 ·
 ·
 ·
 ·

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Appendix D1 – Deep Cored Boreholes

 CLIENT:
 Queensland Investment Corporation

 PROJECT:
 Castle Towers Extensions

 LOCATION:
 Cnr Old Northern & Showground Roads, Castle Hill
 SURFACE LEVEL: 133.2 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 108 PROJECT No: 43863 DATE: 19 Apr 06 SHEET 1 OF 2

Г			Deere of 1	Dook I						
	Depth	Description	Degree of Weathering	Rock Strength	Fracture Spacing	Discontinuities	-			In Situ Testing
屗	(m)	of	Loc		(m)	B - Bedding J - Joint	Type	Core Rec. %	å S	Test Results &
			WH W S S H O		0.00	S - Shear D - Drill Break	≧	ပြန္စ	<u>م</u> ٢	∝ Comments
133	0.1	TOPSOIL - brown clayey silt						<u> </u>		
	0.65	SILTY CLAY - very stiff to hard, orange brown mottled grey silty clay, humid SILTSTONE - very low to low strength, highly to moderately weathered, grey mottled orange					s			25/50mm refusal
132	-2	siltstone interlaminated with some sandstone layers - low to medium strength from						,		1010521
131	-3	1.8m				Unless otherwise stated, rock is fractured along rough, planar, ironstained bedding planes & joints dipping at 0°- 10°				
29	-4	LAMINITE - medium strength, moderately then slightly weathered, fractured and highly fractured, orange brown and grey laminite, with some very low and extremely low strength, shaly clay bands				3.5m: J75°	с	100	0	PL(A) = 0.3MPa
	-5					4.23m: J50° partially healed 4.28m: J25° 4.8m: J75° clay veneer 4.85m: J80° 4.93m: J25° 5.33m: B0°, 5mm clay healed	С	100	8	PL(A) = 0.4MPa PL(A) = 0.7MPa
	-6 6.26 6.35 -7	LAMINITE - high strength, fresh and fresh stained, slightly fractured, dark and light grey laminite				^L 5.4m: J45° 6.26m: CORE LOSS; 80mm 6.9m: J45°	с	93	43	PL(A) = 2.1MPa
125 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 8					7.2m: J35° 3mm clay 7.25m: J35° x 2 7.52m: J45° slickensided 8m: J35° 8.3m: J75° healed 8.52m: J25° crushed	с	100	92	PL(A) = 1.6MPa
	-9					8.61m: J75°	С	100	100	PL(A) = 1.1MPa

RIG: Multi-Drill Rig

DRILLER: Tracess

LOGGED: SI/MMK

CASING: HW to 0.83m

TYPE OF BORING: Solid flight auger to 3.0m; Rotary to 3.3m; NMLC-Coring to 13.85m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

SAMPLING & IN SITU TESTING LECEND A Auger sample pp Packet penetrometer (kPa) D Disturbed sample PID Photo ionisation detector B Bulk sample S Standard penetration test U, Tube sample (x nm dia.) PL Point load strength is(50) MPa W Water sample V Shear Vane (RPa) C Core drilling Image: Standard penetration test	CHECKED Initials: GRB Date: 6/6/66 DOUGIAS Partners Geotechnics · Environment · Groundwater
--	--

SURFACE LEVEL: 133.2 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 108 PROJECT No: 43863 DATE: 19 Apr 06 SHEET 2 OF 2

Π	Darath	Description	Degree of Weathering ⊖	Rock Strength a	Fracture	Discontinuities	Sa	mplir	ng &	In Situ Testing
RL	Depth (m)		Degree of Weathering Manual Angle Manual Ang	Strength	Spacing (m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core Rec. %	RQD %	Test Results & Comments
. 123		LAMINITE - high strength, fresh and fresh stained, slightly fractured, dark and light grey					С	100	79	PL(A) = 1.2MPa
		laminite (continued)			┆╺┿┿┛╵╢	10.3m: J35° 10.55m: J80°				
122	- 10.9 - 11	SILTSTONE - high strength, fresh, slightly fractured and unbroken, black siltstone				10.92m: J45°	с	100	98	
121	- 12					12.1m: J45°	с	100	100	PL(A) = 1.9MPa
1 	- 13				╎┎╣	13.1m: J90°				PL(A) = 1.3MPa
	40.05						с	100	100	PL(A) = 1MPa
119	13.85 -14	Bore discontinued at 13.85m								
118	- 15									
4	- 16									
	- 17					,				
ŀĒ	- 17									
					ii ii					
	- 18									
115										
	- 19									
114										
	G: Multi-	Drill Rig DRILL	ER: Tracess		GED: SI/MN				0.0.8	

RIG: Multi-Drill Rig **DRILLER:** Tracess LOGGED: SI/MMK TYPE OF BORING: Solid flight auger to 3.0m; Rotary to 3.3m; NMLC-Coring to 13.85m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND CHECKED SAMPi Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Care diffuse
 J LES IING LEGEND

 pp
 Pocket penetromater (kPa)

 PID
 Photo ionisation detector

 S
 Standard penetration test

 PL
 Point load strength Is(50) MPa

 V
 Shear Vane (kPa)

 D
 Water seep
 ¥
 A D B U W C Initials: GRB **Douglas Partners** Date: 6/6/06 Geotechnics · Environment · Groundwater Core drilling

Queensland Investment Corporation LOCATION: Cnr Old Northern & Showground Roads.

Castle Hill

Castle Towers Extensions

CLIENT:

PROJECT:

CLIENT: Que PROJECT: Cas LOCATION: Cnr

1

Queensland Investment Corporation

LOCATION: Cnr Old Northern & Showground Roads, Castle Hill SURFACE LEVEL: 130.6 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 110 PROJECT No: 43863 DATE: 28 Apr 06 SHEET 1 OF 2

	5	Description	Degree of Weathering ≌	Rock Strength	Fracture Spacing	Discontinuities				In Situ Testing
RL	Depth (m)	of Strata		이번 데리 나라말 5.	(m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core Rec. %	åD %	Test Results &
-	0.05	ROADBASE - roadbase gravel (MAN SE C					Čž	<u>بد</u>	Comments
÷	- - -	filling, with yellow brown clay SILTY CLAY - orange brown silty					А			
130	0.6	clay, with some gravel (possibly/			 					
-	-1 1.0	SILTSTONE - extremely low then very low and low strength, highly			 					
-		weathered, orange brown and grey siltstone				Note: Unless otherwise stated, rock is fractured	s			14,28 refusal
129		LAMINITE - low and medium strength, extremely then highly				along irregular, ironstained bedding plane dipping at 0°- 10°				
-		weathered, light brown and grey iron cemented laminite, with some				plane orpping at 0 - 10				
-	-2	shaly clay bands								
ŀ										23/60mm
128	2.6	LAMINITE - alternate bands of				Rock is highly fractured	s. c	100	0	refusal
ł	-3	medium strength, moderately weathered, iron cemented laminite and grey shaly clay laminations.				& fragmented from 2.6 to 4.76m, generally along bedding				
ŀ	-	Generally highly fractured and fragmented			II II	along bedding	с	100	0	PL(A) = 0.3MPa
12		nagmenteu								
Ę	· .									
-	-4						С	100	0	
-										
126	4.78	SILTSTONE - extremely low	┥ <mark>┢┿┥</mark> ╿╷╿╎┝ <u>╌╴</u>	╡┎┼╍┿╍┿┛╎╎╎╎╎						
ļ	-5 -5	strength, extremely weathered, slightly fractured, mottled yellow					с	100	65	
ŀ	5.28	brown siltstone				5.28-7.7m: highly		100	65	
125	-	moderately weathered, highly fractured, orange brown dark				fractured to fragmented				PL(A) = 0.4MPa
	- -6	grey/black siltstone								гц(A) – 0.4Мга
ŀ	-									PL(A) = 0.4MPa
2							c	100	0	
Ę										
	L7 Ĺ									
ŧ	-									
- <u>5</u>	- -						с	100	0	
F	-8							100	0	PL(A) = 0.4MPa
F										
13	- -						,			
Ē				│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │		8.69m: J50° 8.8m: crushed rock zone				
ŀ	-9 9.0	SILTSTONE - medium strength, fresh stained, slightly fractured,		╡╷┡┯┓╎╷╷╷			с	100	79	
		black siltstone				9.25m: J45° smooth				
12	E									PL(A) = 0.4MPa
Ŀ	9.85	LAMINITE - see next page				9.92m: J80° stepped			L	l
	G: Bob		LER: E Grima		GED: SI	CASI	NG:	HW	to 2.9	ōm
		BORING: Solid flight auger to 2.5m BSERVATIONS: No free groundwa			5 16.UM					
	EMARK									

Г		IN SITU TESTING LEGEND	CHECKED
1	Auger sample	pp Pocket penetrometer (kPa)	
	Disturbed sample Bulk sample	PID Photo ionisation detector S Standard penetration test	Initials: (SRB
	J, Tube sample (x mm dia.)	PL Point load strength Is(50) MPa	
	Water sample	V Shear Vane (kPa)	
	Core drilling	D Water seep	Date: 6 6 06 Geotechnics · Environment · Groundwater

CLIENT: PROJECT:

Castle Towers Extensions

Queensland Investment Corporation

LOCATION: Cnr Old Northern & Showground Roads, Castle Hill SURFACE LEVEL: 130.6 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 110 PROJECT No: 43863 DATE: 28 Apr 06 SHEET 2 OF 2

	n	Description	Weathering	을	Strength 📷	Fracture Spacing	Discontinuities	1		-	n Situ Testing
	Depth (m)	of Strata	Degree of Weathering	Grapt		(m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core ec. %	RQD %	Test Results
	10.0	LAMINITE - high strength, fresh, slightly fractured and unbroken, light grey and grey laminite						c		100	Comments PL(A) = 1.6MPa
	12						12.11m: J50°				PL(A) = 1.9MP PL(A) = 1.8MP
	12.73 13	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey fine grained sandstone 13.0-13.47m,13.7-13.95, 14.1-14.25 & 14.85-15.3m;						с	100	100	
	14	interlaminated sandstone and siltstone									PL(A) = 1.5MF PL(A) = 2.2MF
· · · · · · · · · · · · · · · ·	15	15.8-16.0m: yellow brown, ironstained sandstone					14.91m: J65°, healed	с	100	88	PL(A) = 2.1M PL(A) = 1.4M
	16 16.0	Bore discontinued at 16.0m									
	- 18										
	- 19			A CONTRACTOR OF							

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 2.6m; NMLC-Coring to 16.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

ing

CLIENT: PROJECT:

Queensland Investment Corporation **Castle Towers Extensions** LOCATION: Cnr Old Northern & Showground Roads, Castle Hill

SURFACE LEVEL: 132.4 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 111 PROJECT No: 43863 DATE: 19 Apr 06 SHEET 1 OF 2

	Derth	Description	Degree Weather	of ing 읃	Rock Strength	Fracture	Discontinuities	Sa	impli	ng &	In Situ Testing
리	Depth (m)	of		Graphic Loa		Spacing (m)	8 - Bedding J - Joint	Type	sre %	RQD %	Test Result
		Strata	MANAS	2 8 0		0.01 0.05 0.50 1.00	S - Shear D - Drill Break	`	ပြစ္စည္ဆ	<u>م</u> ړ	Comments
ţ	0.15	CONCRETE FILLING - poorly compacted,									
3	0.4	brown gravelly clay filling, moist	Liii	iβX							
F		SILTY CLAY - very stiff to hard, orange brown mottled light grey									
-		silty clay, humid				i ii ii					
ł	•1							-			
Ē	1.35			¦ [/_				S			3,5,10/100m/ refusal
ļ		LAMINITE - extremely low to very low strength, highly weathered,						 			
ŧ		grey mottled orange laminite		1							
Ē	2	- very low and low strength, with									
ł		some medium strength ironstone	ILI					ĺ			
콲		bands from 2.0m									
Ē											
Ĺ	3										
ţ							Note: Unless otherwise stated, rock is fractured				
4				1			along rough, planar,				
F							ironstained bedding planes & joints dipping				
ł							at 0°- 10°				
F	4										
j.	4.4		╞ <mark>┏╧┛┊╶┊╶</mark>								
ŀ	T.T	LAMINITE - medium strength, moderately then slightly weathered,					4.42m: J90°	c	100	53	
ŧ		highly fractured and fractured,	i i i i		i i i i i i i i	╎╺╅┨┊╎					PL(A) = 0.5MF
F	5	brown, light and dark grey laminite					6 00mm 1759 imperview		400		
ŀ						i iZ ii	5.02m: J75° irregular 5.22m: J25° clay veneer	C	100	63	
1						╎╎┙	5.3m: J30° clay veneer				
Ē			Freed			5,	√ 5.51m: J90° № 5.6m: B10°				
E	6						5.68m: J40° 4-5mm clay				PL(A) = 0.9MF
ţ	-					i i l ii	6.02m: J20°	c	100	54	
ŝĘ	6.5						6.1m: J60° 6.29m: J20°				
F	0.5	LAMINITE - high strength, fresh stained then fresh, slightly	│ ┆ ┆ ┆┗┪				¹ 6.34m: J60°				PL(A) = 1.4MF
ŧ		fractured, light and dark grey									
ļ	7	laminite				i ii li					
Ĵ							7.24m: J50° smooth				PL(A) = 1.2MF
1				i		i ii ii	7.55m: B, ironstained				
ŀ							7.63m: J90° healed	С	100	62	
ŀ	8			1		i ii i	7.84m: J75°				
1						<u>i</u> <u>i</u>	8.3m: J60°		<u> </u>		PL(A) = 1.6MF
ŧ							8.61m: J45° healed				
E	9			· · · · ·			8.81m: J45° healed				
ţ	-							с	100	98	PL(A) = 1.3MF
ţ				· · · · ·		i i r i i	9.29m: B10°				.,
Ē	9.6	SILTSTONE - description next					slickensided 9.47m: J45° smooth				
E		page		i		i ii l i			102	00	
1				<u> </u>			I	С	100	99	

TYPE OF BORING: Diatube to 0.15m; Solid flight auger to 3.8m; Rotary to 4.23m; NMLC-Coring to 14.94m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

	Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.)	& IN SITU TESTING LEGEND pp Pocket penetrometer (kPa) PID Photo ionisation detector S Standard penetration test PL Point load strength 1s(50) MPa	CHECKED Initials: CRB	6 D	Douglas Partners
۱ ر		V Shear Vane (kPa) ⊳ Water seep ₹ Water level	Date: 6/6/06		Geotechnics · Environment · Groundwater

CLIENT: PROJECT: LOCATION: Queensland Investment Corporation Castle Towers Extensions Cnr Old Northern & Showground Roads, Castle Hill SURFACE LEVEL: 132.4 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 111 PROJECT No: 43863 DATE: 19 Apr 06 SHEET 2 OF 2

	Depth	Description	Degree of Weathering A ≇ ≩ & & # €	hic	Rock Strength	er	Fracture Spacing	Discontinuities	Sa			In Situ Testing
R	(m)	of Strata		Grap	EX Low Very Low Medium Very High	Water	(m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	sc.e	RQD %	Test Results &
	10.0	SILTSTONE - high strength, fresh,	A A A A A A A A A A A A A A A A A A A	-	[핏질]종[평]호[[핏질]종[평]한]			10.04m: J50° clay	 		Ľ.	Comments
122	- - - - - - 11	fractured to slightly fractured, black siltstone						10.28m: B10° clay & 10.28m: B10° clay & 10.28m: B10° clay & 10.4m: J55° 10.4m: J55°	С	100	99	PL(A) = 0.6MPa (brittle failure)
120 121	-12							11.2m: possible crush zone between 11.2 & 11.55m '11.22m: J45° '11.35m: J45° smooth '11.45m: J25° smooth '11.51m: J25° smooth '11.55m: J55° clay veneer	С	100	93	PL(A) = 0.2MPa (brittle failure) PL(A) = 0.9MPa
119	-13											PL(A) = 0.9MPa (brittle failure) PL(A) = 0.6MPa (brittle failure)
· · · · · · · · · · · ·	-14 14.15	- with minor sandstone laminations from 13.95m							С	100	100	PL(A) = 1.7MPa
118	-	SANDSTONE - very high strength, fresh, unbroken, light grey fine grained sandstone with some grey siltstone laminations							с	100	100	PL(A) = 3.7MPa
116 117	- 15 ^{14.94}	Bore discontinued at 14.94m										
	-						 					
۱ (- 17						 					
114	-18 											

 RIG:
 Multi-Drill
 DRILLER:
 Tracess
 LOGGED:
 Boyd/SI
 CASING:
 HW to 1.95m

 TYPE OF BORING:
 Diatube to 0.15m;
 Solid flight auger to 3.8m;
 Rotary to 4.23m;
 NMLC-Coring to 14.94m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering
 REMARKS:
 Casing:
 Casing:

CLIENT: PROJECT:

Queensland Investment Corporation Castle Towers Extensions LOCATION: Cnr Old Northern & Showground Roads, Castle Hill

SURFACE LEVEL: 128.4 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 112 PROJECT No: 43863 DATE: 27-28 April 06 SHEET 1 OF 2

	of Strata ROADBASE - dark brown gravelly sand filing SILTY CLAY - orange mottled brown silty clay SHALY CLAY - very stiff, grey mottled orange brown shaly clay SILTSTONE - very low strength, highly and extremely weathered, brown and grey siltstone with some low to medium strength, iron cemented bands and minor sandstone laminations SILTSTONE - low and medium strength, moderately and highly	Degree of Weathering B E I	Graph		Spacing (m) (m) 920 931 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B - Bedding J - Joint S - Shear D - Drill Break	oo > > > > Type	Core Rec. %	RQD %	Test Results & Comments 3,7,19 N = 26
2.0-	ROADBASE - dark brown gravelly sand filling SILTY CLAY - orange mottled brown silty clay SHALY CLAY - very stiff, grey mottled orange brown shaly clay SILTSTONE - very low strength, highly and extremely weathered, brown and grey siltstone with some low to medium strength, iron cemented bands and minor sandstone laminations SILTSTONE - low and medium					S - Snear D - Dhii Break	A A A	2 22	R	3,7,19
2.0-	SILTSTONE - very low strength, highly and extremely weathered, brown and grey siltstone with some low to medium strength, iron cemented bands and minor sandstone laminations SILTSTONE - low and medium						A A A			
3.0-	mottled orange brown shaly clay SILTSTONE - very low strength, highly and extremely weathered, brown and grey siltstone with some low to medium strength, iron cemented bands and minor sandstone laminations SILTSTONE - low and medium									
3.0-	highly and extremely weathered, brown and grey siltstone with some low to medium strength, iron cemented bands and minor sandstone laminations SILTSTONE - low and medium						S			
3.0-	highly and extremely weathered, brown and grey siltstone with some low to medium strength, iron cemented bands and minor sandstone laminations SILTSTONE - low and medium									
	cemented bands and minor sandstone laminations SILTSTONE - low and medium					Note: Unless otherwise stated, rock is fractured along irregular,	A			
						ironstained bedding planes dipping at 0°- 10°	_s_/			25/60mm refusai
ľ	weathered, highly fractured, orange brown siltstone with minor					3.43m: CORE LOSS:	с	84	0	
3.93	sandstone laminations - high strength band 3.54 to 3.93m					3.93m; CORE LOSS;	с	70	70	PL(A) = 1.1MP
4.25	LAMINITE - medium strength, moderately and fresh stained,					170mm Numerous breaks along ironstained bedding	с	100	0	PL(A) = 0.7MP
5.04	laminite		X			5 04m: CORE LOSS	с	85	0	PL(A) = 0.4MP
			· · · · · · · · · · · ·			100mm	с	100	0	PL(A) = 0.5MP
5.92			· · · · · · · · · · ·				с	100	o	PL(A) = 0.5MP
		 	· · · · · · · · · · · ·		┇┺┿┓╶╎╎ ┎╾┿┩╴╵╵	6.51m: J50°	с	100	20	PL(A) = 0.4MP
7 50						6.61m: highly fractured from 6.61-6.93m along numerous healed joints dipping at 30°- 35° 7.2-7.52m: highly	с	90	o	PL(A) = 0.6MP
7.82	SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone					ractured along numerous healed joints dipping 30°- 35° 7.52m: CORE LOSS: 100mm 7.71m: J65°	с	75	54	PL(A) = 0.9MP PL(A) = 0.3MP
8.35						8.07m: J20° 8.35m: CORE LOSS: 380mm 8.77m: I35° bealod				
						8.7/m: J35° nealed 8.94m: J30° 9.08m: J25° 9.4m: J40° 9.51m: J80° 9.6m: J60°	с	93	85	PL(A) = 1MPa
	4.25 - 5.04 5.92 7.52 7.82 8.35	 4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 5.92 7.52 7.82 SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone 8.35 	4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 5.92 7.52 7.82 SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone 8.35	4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 5.92 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.5	4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey aminite 5.04 5.92 7.52 7.82 SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone	4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 5.92 7.52 7.82 SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone	 4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 5.14 5.14 5.14<!--</td--><td> 4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 6.51m: J50° 6.51m: J50° 6.51m: J50° 6.51m: J50° 6.51m: J50° 7.52 7.52 7.52 7.52 7.52 7.54 7.55 7.55 7.55 7.55 7.56 7.57 7.57 7.58 7.59 7.54 7.55 7.55</td><td>4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 5.</td><td>4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 1</td>	 4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 6.51m: J50° 6.51m: J50° 6.51m: J50° 6.51m: J50° 6.51m: J50° 7.52 7.52 7.52 7.52 7.52 7.54 7.55 7.55 7.55 7.55 7.56 7.57 7.57 7.58 7.59 7.54 7.55 7.55	4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 5.04 5.	4.25 LAMINITE - medium strength, moderately and fresh stained, fragmented then fractured, grey laminite 1

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 3.0m; NMLC-Coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

F			CHECKED		
	A Auger sample D Disturbed sample B Bulk sample	pp Pocket penetrometer (kPa) PID Photo ionisation detector S Standard penetration test	Initials: GRB	ζ.	Develop Deve
	U, Tube sample (x mm dia.) W Water sample	PL Point load strength Is(50) MPa V Shear Vane (kPa)	Date: 6 6 06	ノ	Douglas Partners
Į	C Core drilling	⊳ Water seep 🛛 🐺 Water level	Date: 6/6/00		Geotechnics • Environment • Groundwat

CLIENT: PROJECT: LOCATION:

Queensland Investment Corporation Castle Towers Extensions Cnr Old Northern & Showground Roads, Castle Hill SURFACE LEVEL: 128.4 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 112 PROJECT No: 43863 DATE: 27-28 April 06 SHEET 2 OF 2

Donth	Description	Degree of Weathering	- ic	Rock Strength	er L	Fracture	Discontinuities				In Situ Testing
(m)	of		Grapi		Wat	(m)	B - Bedding J - Joint	ype Y	9 0 8 0 8	02%	Test Results &
10.0	Strata SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone (continued)		,				S-Stear D-Diff Diesk	с С	93	85	Comments PL(A) = 0.6MP
- 11			· ·				10.77m: J20° smooth 10.83m: J20° smooth				
11.52 - 12	SANDSTONE - high then very high strength, fresh, slightly fractured, light grey fine grained sandstone with siltstone laminations and		·				11.39m: B (x3)	с	100	94	PL(A) = 1MP PL(A) = 1.7MF
	bands						12.25-12.4m: J90° B (x2)				
-13	12.72-13.05 & 13.57-14.25m: alternate bands of siltstone and sandstone		· · -								PL(A) = 1.7M
-14) <u>1</u> 1 1 1 1 1 1 1 1 4 4 1 1 1 4 4 1 1 1 4 4 1 1 1 4 4 1 1 1 1 1	√13.55m: B 13.61m: B	с	100	98	
											PL(A) = 4MF
-15 15.0	Bore discontinued at 15.0m		: -								
- 16											
- 17											
- 18											
- 19											
• • •											
	10.0 11.52 12 13 14 15 15.0 16 17 18	10.0 SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone (continued) 11.11 11.52 11.52 SANDSTONE - high then very high strength, fresh, slightly fractured, light grey fine grained sandstone with siltstone laminations and bands 12 12.72-13.05 & 13.57-14.25m: alternate bands of siltstone and sandstone 13 12.72-13.05 & 13.57-14.25m: alternate bands of siltstone and sandstone 14 15 15 15.0 Bore discontinued at 15.0m 16 17 18	10.0 SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black siltstone (continued) 1<	10.0 SILTSTONE - high strength, fresh stained then fresh, slightly fractured, black sitistone (continued) 1	Depth (m) Strata $B \ge 0$	10.0 SLITSTONE - high strength, fresh slightly fractured, black siltstone (continued) 1	1000 SILTSTORE - high strength, fresh (continued) 1 <	100 SLTSTONE - high strength, fresh slightly fractured, black slightly fract	1000 SLTSTONE - high strength, feeh statuted that free, slightly strength, feeh slightly strength, feeh slightly fractured, black slightly fractured, blac	1000 SLTSTONE - high strength, fresh statistone (continued) I I I I I I I I I I I I I I I I I I I	1000 SLTSTOME - high strongth, frash statistore (continued) 1 1 - 1 1 1 - 1 1 1 - 1 1 1 - 1

 RIG:
 Scout
 DRILLER:
 L Cooper
 LOGGED:
 SI

 TYPE OF BORING:
 Solid flight auger to 2.5m;
 Rotary to 3.0m;
 NMLC-Coring to 15.0m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:

Γ.		TU TESTING LEGEND	CHECKED		
AD BU V V C	Auger sample Disturbed sample Buik sample Tube sample (x mm dia.) Water sample Core drilling	pp Pocket penetrometer (kPa) PID Photo ionisation detector S Standard penetration test PL Point load strength Is(50) MPa V Shear Vane (kPa) ▷ Water seep ₹ Water level	Initials: GRB Date: 6/6/06.	(\mathbf{D})	Douglas Partners Geotechnics · Environment · Groundwater

CLIENT:Queensland Investment CorporationPROJECT:Castle Towers ExtensionsLOCATION:Cnr Old Northern & Showground Roads,
Castle Hill

SURFACE LEVEL: 129.3 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 113 PROJECT No: 43863 DATE: 02 May 06 SHEET 1 OF 2

D . "	Description	Degree of Weathering 글	Rock Strength	Fracture	Discontinuities				n Situ Testing Test Results
Depth (m)	of Strata		Strength Ex Low Medium Needlum Ex High	Vat 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.010 0.000 0.000 0.0000 0.00000000	B - Bedding 🛛 - Joint S - Shear 🔹 D - Drill Break	Type	Core Rec. %	Rob %	Comments
	ASPHALTIC CONCRETE				Note: Unless otherwise stated, rock is fractured	A			
	gravel roadbase filling SILTY CLAY - grey mottled yellow				along rough, planar, ironstained bedding plane dipping at 0°- 10°				
Ę	and brown silty clay				Note: strength may be underestimated due to	A			22,30/50mm
	SHALY CLAY - hard, mottled red brown shaly clay SILTSTONE - medium strength,				slippage and brittle nature of rock	S			refusal
	moderately weathered, highly fractured and fragmented, light grey brown siltstone. Some				Numerous breaks along bedding	с	69	0	PL(A) = 0.5MP
-2 2.0	extremely low and very low strength bands				2m: CORE LOSS: 220mm				
2.6					2.6m: CORE LOSS: 400mm	с	50	o	
-3						с	86	46	PL(A) = 0.8MF
3.43				┤╎ <mark>╄═╝┼╌┼┿</mark> ╴ ╽ ┝╍┼┪ ╵╵	3.43m: CORE LOSS: 60mm				
3.8 -4 4.13	LAMINITE - medium strength, fresh stained and moderately weathered, fractured and			╡ <mark>╞╴┊╴╴┊╴</mark>	3.92m: J30° 4.04m: J40° 4.13m: CORE LOSS:	C	90	46	
-	fragmented, red brown and grey laminite 4.09-4.13 & 4.70-4.73m: has				70mm 4.63m: J40°	С	100	20	PL(A) = 0.4M
-5	extremely low strength clayey bands				4.78m: J85°- 90° 5.08m: J85° 5.32m: J25°	c	93	28	PL(A) = 0.2M
-	5.37-5.90m: has numerous healed joints dipping at 5°- 35°				5.67m: J45° healed 5.72m: B0°- 5° with				F L(A) = 0.200
- 5.91 -6 3					2mm clay 5.76m: J75°- 85° undulating, partially				
					healed 5.91m: CORE LOSS: 90mm 6.02m: J30°- 35°				PL(A) = 0.4M
-7 7.0	SILTSTONE - medium strength, fresh stained, fractured and highly fractured, dark grey and black siltstone				6.39m: J25° 6.48m: J40°- 45° 6.65m: J40°- 45° 6.93m: J35°- 40° undulating 7.26m: J45°	C	88	13	PL(A) = 0.5M
7.75 -8	7.50-7.62m: highly weathered, clayey band (possible crush zone)				7.33m: J40°- 45° 7.4m: J85°- 90° (possible crush zone between 7.40 & 7.61m,				
					120mm clay) 7.75m: CORE LOSS: 250mm 78m: J45° rough 78.18m: J20° 78.47m: J25° & 40° 78.66m: J35° healed 18.86-8.80m: J45°	c	100	22	PL(A) = 0.5M
12	- fresh from 9.65m				^L 9.0-9.90m: J85°- 90° 9.68m: J70° smooth	с	100	13	PL(A) = 0.5M
RIG: Scol			<u>ı ı ı44</u>	LOGGED: SI	CAS	SING:	нw	' to 1	.3m

REMARKS:

D D B B U, Ti W W	SAMPLING & IN uger sample isturbed sample uik sample ube sample (x mm dia.) vater sample ore drilling	SITU TESTING LEGEND pp Pocket penetrometer (kPa) PID Photo ionisation detector S Standard penetration test PL Point load strength Is(50) MPa V Shear Vane (kPa) ⊳ Water seep ₹ Water level	CHECKED Initials: GRB Date: 6/6/06	(D	Douglas Partners Geotechnics · Environment · Groundwater
----------------------------	---	--	--	---	---	--

 CLIENT:
 Queensland Investment Corporation

 PROJECT:
 Castle Towers Extensions

 LOCATION:
 Cnr Old Northern & Showground Roads, Castle Hill
 SURFACE LEVEL: 129.3 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 113 PROJECT No: 43863 DATE: 02 May 06 SHEET 2 OF 2

Π			Description	Degree of	. <u>0</u>	Rock Fracture		Sa			n Situ Testing
뭑	ו	Depth (m)	0	Weathering	Graph Log		B - Bedding J - Joint	Type	Core ec. %	RQD %	Test Results &
Ц	_	10.	Strata	M T M S L L			<u>}</u>				Comments
118 119	· · · · · · · · · · · ·	11	fresh stained, fractured and highly fractured, light grey and black siltstone (continued) - some fragmented zones possibly by drilling				10.23m: J60° & 30° (stepped) 10.5m: J70° smooth 10.63m: J40° smooth 10.72m: J40° smooth 10.79m: J45° smooth 10.8m: J85° - 90° 11.1m: J85° undulating,	c	100		PL(A) = 0.7MPa PL(A) = 0.4MPa
117	<u> </u>	12	4				11.53/fi: 365 shickin 11.78/fi: 345° & 65° 11.83/fi: 385° 11.95/fi: 370° smooth 12m: Irregular jointing between 12.0 & 12.50m (possible crush zone)				PL(A) = 0.6MPa
116	t	12.7 13	SANDSTONE - high strength, fresh, fractured, grey fine grained sandstone with some siltstone layers and laminations 13.76-14.28m: faulted contact with				12.68m: B0°- 5° smooth 12.8m: J65° healed 13.1m: J65° healed 13.1m: J65° healed 13.19m: J75° 13.36m: J85° healed 13.42m: J85° healed 13.53m: J85° - 90° undulating	c	89	40	
ŀ	Ę	14 14	0 up to 0.5m clay and fragmented		\downarrow		13.76m: Fault J70° with				
		14					fragmented rock 14m: CORE LOSS: 190mm 14.47m: J40°- 45° 14.68m: B0°- 5° with 2-3mm clay	c	63	48	PL(A) = 2.7MPa
117 - 118 -	112 113 113	- 16 - 17	Bore discontinued at 15.0m				(<u>300mm /</u> 				
	111 111	-19									

 RIG: Scout
 DRILLER: L Cooper
 LOGGED: SI

 TYPE OF BORING:
 Solid flight auger to 1.3m;
 Rotary to 1.5m;
 NMLC-Coring to 15.0m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:

CASING:	HW to	1.3m
---------	-------	------

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 PID Photo ionisation detector

 B
 Bulk sample
 S
 Standard penetration test

 U,
 Tube sample (x mm dia.)
 PL
 Point load strength Is(50) MPa

 W
 Vater sample
 V
 Shear Vane (kPa)

 C
 Core drilling
 Water seep
 Water level

CLIENT: PROJECT:

Queensland Investment Corporation Castle Towers Extensions

LOCATION: Cnr Old Northern & Showground Roads, Castle Hill SURFACE LEVEL: 124.4 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 114 PROJECT No: 43863 DATE: 03 May 06 SHEET 1 OF 2

	_	Description	Degree of Weathering	. <u>ല</u>	Rock Strength	Fracture Spacing	Discontinuities				n Situ Testing
뷥	Depth (m)	of	-	Graphic Log		(m)	8 - Bedding J - Joint	Type	o o v o	RQD %	Test Results &
		Strata	MH MS S E			0.01	S - Shear D - Drill Break	É,	ပည္ရ	Ϋ́,	Comments
123 124	0.2	TOPSOIL - brown gravelly clay topsoil with some vegetation FILLING - dark brown silty clay filling, with a trace of sand and glass fragments SILTY CLAY - very stiff, grey mottled orange brown silty clay, with some ironstone bands and gravel						A A S			6,10,12 N = 22
122	-2	- hard from 2.5m - grading to shaly clay					Note: Unless otherwise stated, rock is fractured along rough, irregular,	S			8,14,17 N = 31
121							ironstained bedding planes & joints dipping at 0°- 10°				
	3.7	SILTSTONE - alternate bands of extremely low, low and medium	╌╌╌╵┎╵╌┼╌┼╴ │┊┎┵┛┆┊╎				Defects obscured by	С	100	0	
120	-4	strength, extremely, highly and moderately weathered, highly fractured and fractured, orange brown and grey siltstone					weathering	с	100	36	
	-5	Down and grey sinsione						c	100	27	PL(A) = 0.3M
119								c	100	24	
	-6							с	100	0	-
118	7							с	100	47	
7	7.12	SILTSTONE - medium strength, moderately then slightly weathered,					7.32m: J75°				PL(A) = 0.5M
117	8	fractured, orange brown and grey siltstone 7.5-7.53 & 7.64-7.69m: extremely low strength and extremely weathered bands					7.53m; J20°				PL(A) = 0.7M
116				 			8.15m: B, ironstained 8.3m: B x 3				
	-9						8.8m: J20°	c	100	80	PL(A) = 0.7M
115	9.12	SANDSTONE - high strength, fresh, slightly fractured, light grey fine grained sandstone with some siltstone laminations LAMINITE - description next page					9.5m: J65° healed		and the second		PL(A) = 1.5N

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 3.7m; NMLC-Coring to 15.05m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

[.		SITU TESTING LEGEND	CHECKED		
0 8 U,	Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.)	PID Photo ionisation detector S Standard penetration test PL Point load strength Is(50) MPa	Initials: GRB		Douglas Partners
w c	Water sample Core drilling	V Shear Vane (kPa) D Water seep 🐺 Water level	Date: 6/6/06		Geotechnics • Environment • Groundwater

CLIENT: PROJECT:

JECT: Castle Towers Extensions

Queensland Investment Corporation

LOCATION: Cnr Old Northern & Showground Roads, Castle Hill SURFACE LEVEL: 124.4 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 114 PROJECT No: 43863 DATE: 03 May 06 SHEET 2 OF 2

CASING: HW to 2.5m

Γ		Description	Degree of Weathering	Rock	Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing
님	Depth (m)	of	vveamering G		Spacing (m)	B - Bedding J - Joînt	e	<u>ہ</u> چ	<u> </u>	Test Results
	(11)		A A A S S H	드 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	S - Shear D - Drill Break	Type	ပီမို	RoD %	& Comments
114	10.0	LAMINITE - high strength, fresh, unbroken, dark and light grey laminite					с	100	80	
3	- 11									PL(A) ≃ 1.3MPa
11 	- 12						с	100	100	PL(A) = 2.3MPa
112	12.3 - 13	SANDSTONE - high strength, fresh, unbroken, light grey fine grained sandstone				12.55m: J40°				PL(A) = 2.8MPa
										PL(A) = 2.1MPa
	- 14									PL(A) = 1.7MPa
110		- laminite from 12.85 to 13.1m					C	100	100	PL(A) = 1.3MPa
109	- ¹⁵ 15.05	Bore discontinued at 15.05m								
108	- 16									
	- 17 - 17 									
	- 18									
105	- 19									

 RIG: Bobcat
 DRILLER: E Grima
 LOGGED: SI

 TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 3.7m; NMLC-Coring to 15.05m

 WATER OBSERVATIONS: No free groundwater observed whilst augering

 REMARKS:

ADBU%C	SAMPLING & Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling	IN SITU TESTING LEGEND pp Pocket penetrometer (kPa) PID Photo ionisation detector S Standard penetration test PL Point load strength Is(50) MPa V Shear Vane (kPa) b Water seep ¥ Water level	CHECKED Initials: C.R.B Date: 6/6/000		D	Douglas Partners Geotechnics · Environment · Groundwater
--------	---	---	---	--	---	--

 CLIENT:
 Queensland Investment Corporation

 PROJECT:
 Castle Towers Extensions

 LOCATION:
 Cnr Old Northern & Showground Roads, Castle Hill

SURFACE LEVEL: 118.1 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 115 PROJECT No: 43863 DATE: 04 May 06 SHEET 1 OF 2

	Da : 4	Description	Weathering	ie -	Rock Strength	Fracture	Discontinuities	Sa	mplii	ng &	In Situ Testing
교	Depth (m)	of	Degree of Weathering	Log		Spacing (m)	B - Bedding J - Joint	Type	ore 0.%	RQD %	Test Results &
			M H M S S S S		EXH Media	0.0	S - Shear D - Drill Break	f	σě	Ϋ́	Comments
1.	0.1	TOPSOIL - dark brown silty clay topsoil with some roots and vegetation FILLING - orange brown silty clay		×				A A			
117	- 1	 filling, with a trace of gravel FILLING - brown and orange brown silty clay and gravelly clay filling, with concrete and metal fragments 						LA.) S			10,20,22 N = 42
116	-2	SILTSTONE - extremely low strength, extremely weathered, grey mottled orange brown siltstone, with some ironstone bands and numerous shaly clay bands						A			25/76 refusal
	-3						Unless otherwise stated, rock is fractured along rough, irregular, ironstained bedding planes & joints dipping at 0°- 10°				TETUSAT
114	-4 4.0	SILTSTONE - extremely low to very low strength, highly and moderately weathered, highly fractured, orange brown and grey					weathering obscures defects	с	100	o	
113	4.7 -5	offertane with shaly alow hands and					4.8m: J45° numerous breaks along	С	100	20	
112 11	6	moderately and highly weathered, fractured and highly fractured yellow brown and brown grey siltstone. Some extremely weathered, extremely low and very low strength bands					5.52m: J65°	с	100	19	PL(A) = 0.5MPa
-	-7						6.24m: J35° healed 6.34m: J25° ∖ 6.63m: J45° 6.68m: J60°	с	100	34	PL(A) = 0.4MPa
	7.42	SANDS I ONE - medium strength, slightly weathered, highly fractured, light brown and grey sandstone.					7.3m: J40° & 25° stepped 7.71m: J90° healed				PL(A) = 0.7MPa PL(A) = 1.8MPa
110		LAMINITE - high strength, fresh, slightly fractured and unbroken, grey laminite with some fine grained sandstone bands and laminations		· · · · · · · · · · · · · · · · · ·			8.3m; B5° *8.4m: B10°	с	100	73	
100	-			· ·			9.2m; J30° clay veneer 9.23m; J45° clay veneer 9.29m; J35° smooth, concoidal				PL(A) = 1.6MPa

 RIG:
 Bobcat
 DRILLER:
 E Grima
 LOGGED:
 SI

 TYPE OF BORING:
 Solid flight auger to 2.9m;
 Rotary to 4.0m;
 NMLC-Coring to 11.30m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Standpipe installed to 11.3m. Lowest 3m slotted

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 pp
 Pocket penetrometer (kPa)

 D Disturbed sample
 pD
 PlD Photo ionisation detector

 B Bulk sample (x mm dia.)
 PL
 Point load strength Is(50) MPa

 W Water sample
 V
 Shear Vane (kPa)

 C Core drilling
 P
 Water seep ₹

CLIENT: PROJECT: LOCATION: Queensland Investment Corporation Castle Towers Extensions Cnr Old Northern & Showground Roads, Castle Hill SURFACE LEVEL: 118.1 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 115 PROJECT No: 43863 DATE: 04 May 06 SHEET 2 OF 2

CASING: HW to 2.9m

Image: Construct of the strength of the	Discontinuities	Sampling &	In Situ Testing
Image: second			
Image: second	B - Bedding J - Joint S - Shear D - Drill Break	Type Core Rec. %	l est Results
11 11.3 11.3 11.3 11.3 11.4 <	0 - Orlean D - Drin Dreak		Comments
11.3 Bore discontinued at 11.3m 1 <t< td=""><td></td><td>C 100 73 C 100 100</td><td></td></t<>		C 100 73 C 100 100	
$ \frac{9}{12} = 12 $ $ \frac{9}{12} = 13 $ $ \frac{9}{12} = 14 $ $ \frac{9}{11} = 115 $ $ \frac{9}{11} = 11$			PL(A) = 2.4MPa
$ \begin{bmatrix} 13 \\ 14 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$			
$ \begin{bmatrix} y \\ y \\ z \\$			
$ \begin{bmatrix} \underline{g} \\ 15 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			
$ = 16 \\ = 16 \\ = 17 \\ = 18 \\ = 18 \\ = 19 \\ = 10 \\$			
17 1			

 RIG:
 Bobcat
 DRILLER:
 E Grima
 LOGGED:
 SI

 TYPE OF BORING:
 Solid flight auger to 2.9m;
 Rotary to 4.0m;
 NMLC-Coring to 11.30m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Standpipe installed to 11.3m. Lowest 3m slotted

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 pp
 Pocket penetrometer (kPa)

 D Disturbed sample
 pD
 Photo ionisation detector

 B Bulk sample
 S
 Standard penetration test

 U, Tube sample (x mm dia.)
 PL
 Point load strength is(50) MPa

 W Water sample
 V
 Shear Vane (kPa)

 C Core drilling
 V
 Water saep * Water seep * Water level

CLIENT:

PROJECT:

Queensland Investment Corporation

Castle Towers Extensions

LOCATION: Cnr Old Northern & Showground Roads,

Castle Hill

SURFACE LEVEL: 118.7 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 116 PROJECT No: 43863 DATE: 04 May 06 SHEET 1 OF 1

		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testin
	epth m)	of Strata	Degree of Weathering High Mage Strain Strain Mage Strain Strain Strain Strain		Spacing (m) (m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core čec. %	RQD %	Test Resu & Comment
	1.0	ROADBASE - blue grey slightly silty, gravel roadbase GRAVELLY CLAY - dark brown gravelly clay and silty clay (possible filling) SHALY CLAY - hard, grey mottled orange brown shaly clay with some ironstone bands, gravel and some extremely low strength bands					A A S			8,22,28 N = 50
-2	3.5-	 some very low strength siltstone bands from 2.5m extremely low to very low strength siltstone from 3.0m SILTSTONE - extremely low and 				Note: Unless otherwise stated, rock is fractured along rough, irregular, ironstianed bedding planes & joints dipping at 0°- 10°	s			14,22,22 N = 44
-4		medium strength, highly and moderately weathered, highly fractured, light brown and grey siltstone. Some shaly clay bands				Weathering and degree of fracturing obscures defects	c	100	0	
		above 5.0m	│ दिन्दु ¦ ; ; ; │ दिन्दु ¦ ; ; │ _µ ⊒ ! ; ;				c	100	0	
-5						Numerous breaks along bedding	с	100	0	
-							с	100	0	
-6						5.7m: J35°	с	100	10	
- - - - -	6.34	SILTSTONE - medium then high strength, fresh stained, slightly fractured siltstone. Some sandstone laminations and bands below 6.9m				6.35,6.52m: B5° ironstained 6.44m: J20° 6.61m: J70 healed, 40° 6.81m: J20° healed	c	100	95	PL(A) = 0.5N
		- fresh from 7.34m				7.26m: J25°				PL(A) = 1.5N
8						7.93m: J75° 8.32m: J90°	с	100	100	PL(A) ≃ 1.3N
-9 -	8.85	SANDSTONE - high strength, fresh, unbroken, light grey fine grained sandstone. Some siltstone laminations				8.69m: J20°				PL(A) = 1.9N
-		Bore discontinued at 9.38m								

 RIG:
 Bobcat
 DRILLER:
 E Grima
 LOGGED:
 SI

 TYPE OF BORING:
 Solid flight auger to 2.9m;
 Rotary to 3.5m;
 NMLC-Coring to 9.38m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:

A D B U. W C	SAMPLING & Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core drilling	IN SITU TESTING LEGEND pp. Pockat penetrometer (kPa) PID Photo ionisation detector S Standard penetration test PL Point load strength Is(50) MPa V Shear Vane (kPa) ▷ Water seep ₹ Water level	CHECKED Initials: GRB Date: 6/6/66		Douglas Partners Geotechnics · Environment · Groundwater
--------------	---	--	--	--	--

.

CASING: GL to 2.9m

SURFACE LEVEL: 132.0 AHD BORE No: 401 EASTING: 314915 NORTHING: 6265677 **NORTHING:** 6265677 **DIP/AZIMUTH:** 90°/--

PROJECT No: 84335.00 **DATE:** 22 - 23/6/2014 SHEET 1 OF 1

	Depth	Description	Degree of Weathering	hic	Rock Strength	Fracture Spacing	Discontinuities	Sa	amplii	ng & I	n Situ Testing
Ż	(m)	of Strata	Weathering	Grap	Very Low Very Low Medium High Ex High Ex High	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core ec. %	RQD %	Test Results
	0.1		E N N N N N N N N N N N N N N N N N N N			0.00			Ϋ́Ϋ́Ϋ́	<u> </u>	Comments
Ę	0.28	CONCRETE SLAB									
101	0.7	FILLING - dark brown, silty clay filling with some gravel, damp LAMINITE - extremely low to very low strength, grey and brown shale						D			14/150
		From 1.0m: very low to low strength					Note: Unless otherwise stated, rock is fractured along rough planar bedding planes dipping 0°- 10°	S			14/150 refusal
	2.4 2.51 3	LAMINITE - medium strength, moderately and moderately to slightly weathered, fragmented to fractured and slightly fractured, grey-brown laminite with approximately 20% fine sandstone					2.46m: CORE LOSS: 50mm 2.5m: B5°, cly co, 4mm 2.7m: J90°, fe stn, 10mm 2.8m: J45°, cly co, 2mm	с	100	60	PL(A) = 0.6
1.28	4	lamination. Some very low strength bands		· · · · · · · · · · · · · · · · · · · ·			3.02m: J90°, fé stn, 10mm 3.14m: J45°, cln, ro, 20mm 3.16m: J40°, cln, ro, 20mm 3.31m: B0°, cly co, 5mm				PL(A) = 0.7
	5						3.7m: Jb, vijt Cd, sinin 3.7m: Jb, vith clay coating 4.03m: B0°, cly co, 5mm 4.68m: J20°, cly co, 5mm 4.87m: B0°, fe stn				PL(A) = 0.6
							5.55m: J55°, cln, ro 5.63m: J15°, cln, ro 5.8m: J40°, cly co, 5mm 5.86m: J35°, fe stn 6.06m: J15°, cln, sm 6.14m: J10°, cln, ro	С	100	67	PL(A) = 0.7
	6.36 - 7	SHALE - medium to high and high strength, fresh, slightly fractured, grey shale					 €6.27m: J30°, cln, sm €6.39m: J20°, cln, sm €.8m: J10°, cln, sm €.83m: J15°, cln, sm 				PL(A) = 1
-							7.3m: B0°, cly , 7.65m: J35°, pl, sm, cln				PL(A) = 1.4
	8						^C 7.75m: J45°, pl, sm, Cz, 5mm	с	100	100	PL(A) = 1
	9						8.5m: J35°, pl, sm, cln				· -(~) ~ 1
-							9.25m: J60°, pl, sm, cln 9.72m: J30°, pl, sm, cln				PL(A) = 1
F	10.0						5.72m. 000 , pi, sm, off				
ſĢ	• DT 10	Bore discontinued at 10.0m	FR: SM					/ to 1	2m		
	: DT 10 PE OF E	00 DRILL BORING: Diatube to 0.28m; Solid	.ER: SM flight auger	to 1.0		GED: AL/SI to 2.4m; NN	CASING: HW /ILC-Coring to 10.0m	to 1	.2m		

REMARKS:

CLIENT:

QIC Limited

LOCATION: Castle Street, Castle Hill

PROJECT: Castle Towers Expansion Project

	SAMF	PLIN	G & IN SITU TESTING	LEG			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)		l Dollaise Barthere
C	Core drilling	Ŵ	Water sample	`qq	Pocket penetrometer (kPa)		Douglas Partners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	1	Geotechnics Environment Groundwate
-					· · ·	_	

SURFACE LEVEL: 131.3 AHD **EASTING:** 314939 **NORTHING:** 6265664 **DIP/AZIMUTH:** 90°/-- BORE No: 402 PROJECT No: 84335.00 DATE: 23 - 25/6/2014 SHEET 1 OF 2

\square		Description	Degree of Weathering .≅	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
Ъ	Depth (m)	of		Vice Low Ex Low Vice V Low Medium High High High Kather	Spacing (m)	B - Bedding J - Joint	Type	Sre 2. %	RQD %	Test Results &
		Strata	C A A A A A A A A A A A A A A A A A A A		0.01 0.10 0.50 1.00	S - Shear F - Fault	Ţ	C S	R N	α Comments
		ASPHALTIC CONCRETE								
131	0.31	FILLING - dark brown, silty clay filling with some shale gravel, damp LAMINITE - extremely low to very low strength, grey and brown shale				Note: Unless otherwise stated, rock is fractured along rough planar bedding planes dipping				20/100mm
130	. 1 45	From 1.0m: very low to low strength				0°- 10°	S			refusal bouncing
129	1.45 2 3	LAMINITE - medium to high then medium strength, moderately weathered, fractured and slightly fractured, grey-brown laminite with approximately 25% fine sandstone laminations				2.03m: B0°, cly co, 1mm 2.68m: J50°, cly co, ∖2mm \2.83m: B10°, cly co,	С	100	89	PL(A) = 1.6 PL(A) = 0.5
128	3.6	LAMINITE - medium strength, highly				2mm 3m: J90°, cly co, 2mm, 40mm 3.15m: B0°, cly co, 1mm 3.22m: B0°, cly co, 5mm	С	100	55	PL(A) = 0.7
127	4 4.69	to moderately weathered, fractured and slightly fractured grey brown laminite with approximately 20% fine sandstone laminations. Some extremely low to very low strength bands			H 	¹ 3.46m: J90°, cln, ro, 10mm 3.9m: J25°, cln, ro 4m: B10°, cln, ro 4.08m: B5°, cly co, 2mm 4.15m: B0°, cly co, 4mm 4.28m: J15°, cln, ro	С	92	45	PL(A) = 0.6
	5	SHALE - medium strength, slightly				4.33m: J15°, fe stn 4.62m: CORE LOSS: 70mm 4.74m: J50°, cly vn 4.89m: J25°, cln, ro 4.93m: J90°, cln, ro, 70mm 5m: J30°, cln, ro 55.11m: J90°, cln, ro,				PL(A) = 0.5
	6 7 7.5 -	weathered then fresh stained fractured to slightly fractured, grey-brown shale. Some very low strength bands				70mm 15.12m: J90°, cln, ro, 40mm 5.19m: J90°, cln, ro, 220mm 5.45-5.47m: B5°, fe stn 5.54m: CORE LOSS: 230mm 6.16m: J30°, cln, sm 6.89m: J30°, cln, sm, 170mm 7.44m: J25°, cln, sm	С	100	76	PL(A) = 0.4
123	8	fresh, slightly fractured, grey shale				7.46m: J90°, cln, ro, 80mm -7.54m: J20°, cln, sm 8.9m: J90°, cln, ro,	С	100	88	PL(A) = 1.6 PL(A) = 1.3
	9					40mm 9.17m: J15°, cln, sm 9.26-9.33m: J10°- 15°, cln, sm (x3)	С	100	97	PL(A) = 0.7

RIG: DT 100

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: SM

LOGGED: AL/SI

CASING: HW to 1.0m

TYPE OF BORING: Diatube to 0.31m; Solid flight auger to 1.0m; Wash boring to 1.45m; NMLC-Coring to 14.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

SAN	IPLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		Inolidiae Partner
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Douglas Partners
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwate
· · · · · · · · · · · · · · · · · · ·					_	

SURFACE LEVEL: 131.3 AHD EASTING: 314939 NORTHING: 6265664 DIP/AZIMUTH: 90°/--

BORE No: 402 PROJECT No: 84335.00 DATE: 23 - 25/6/2014 SHEET 2 OF 2

		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	n Situ Testing
ᆋ	Depth (m)	of		Log	Very Low Very Low Low High High Kery High Kery High Out	Spacing (m)	B - Bedding J - Joint	Type	sre %	RQD %	Test Results &
	. ,		H M M M M M M M M M M M M M M M M M M M	G	Ex Low Very Low Very Kery Very Very 0.01	0.05 0.10 1.00	S - Shear F - Fault	Ţ	ပိမ္မ	R N	∝ Comments
F F	·11	SHALE - medium and high strength, fresh, slightly fractured, grey shale (continued)					10.16m: J80°, cln, sm, 150mm 10.91m: J25°, cln, ro				PL(A) = 0.7
119 120	11.6 • 12	LAMINITE - high strength, fresh, slightly fractured, light grey to grey laminite with approximately 20% fine sandstone laminations and bands					√11.77m: J10°, cin, ro 11.85m: B0°, cly co, 1mm	С	100	97	PL(A) = 0.8 PL(A) = 1.4
				· · · · · · · · · · · · · · · · · · ·			12.65m: J40°, cln, sm				PL(A) = 2.1
118	·13			· · · · · · · · · · · · · · · · · · ·				с	100	100	PL(A) = 2
117	14 14.0	Bore discontinued at 14.0m									
116	- 15										
115	· 16										
114	17										
113	· 18										
112	·19										

RIG: DT 100

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: SM

LOGGED: AL/SI

CASING: HW to 1.0m

TYPE OF BORING: Diatube to 0.31m; Solid flight auger to 1.0m; Wash boring to 1.45m; NMLC-Coring to 14.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

	SAN	IPLIN	3 & IN SITU TESTING	LEG	END											
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)											
B	Bulk sample	P	Piston sample) Point load axial test Is(50) (MPa)					_						
BLI	< Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	7	. 1				26			FT.	no	rc
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				Doug		aJ		- a			5
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					/_						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			1	Geotechnics	1	Envir	onn	nent	I Gr	oundv	vater
	· · · · ·					-		_	200000000000			U			5 a.// a /	

SURFACE LEVEL: 133.4 AHD **EASTING:** 314974 **NORTHING:** 6265702 **DIP/AZIMUTH:** 90°/-- BORE No: 404 PROJECT No: 84335.00 DATE: 19 - 20/6/2014 SHEET 1 OF 2

T	_	Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities				In Situ Testing
뇌	Depth (m)	of	iraph	Strength Nedium Medium Medium KEKHow Medium Medium Medium Medium	Spacing (m)	B - Bedding J - Joint	Type	ore %	RQD %	Test Results &
			M H M N N N H M N N N N N N N N N N N N		0.05 0.10 0.50 0.10 0.50 0.10 0.50 0.10 0.50 0.5	S - Shear F - Fault	ŕ	Ο̈́́	Ϋ́ς	Comments
E		FILLING - grey-brown, silty fine sand filling with grass roots, humid					E			PID<5ppm
133							Α	1		PID<5ppm
F							LE.	1		
F	1 1.0	CLAY - very stiff to hard, grey clay,					E	-		PID<5ppm PID<5ppm
2		moist					E S			3,16/140mm refusal
Ę										, cracal
F										
F	-2									
131						Note: Unless otherwise				
F	2.6	LAMINITE - extremely low to very				stated, rock is fractured along rough planar	s			17,17,20/110m refusal
Ę	-3	low strength, grey-brown shale				bedding planes dipping 0°- 10°	<u> </u>	-		Torabar
ļ	3.33									
130	0.00	LAMINITE - medium and high strength, moderately weathered,				3.45-4.12m: B (x6) 0°-	с	100	82	
Ē		fractured to slightly fractured, grey-brown laminite with		╡ ╃╾┽╤╹╵ ╽╵╵ ╴╵╵╵╵		5°, cly, 5-10mm				PL(A) = 1.2
E	-4	approximately 25% fine sandstone lamination								
129	4.3	LAMINITE - high strength, slightly				4.19m: J30°, pl, ro, fe 4.38-5.47m: B (x6) 0°, fe				
F		weathered then fresh, slightly fractured and unbroken, light								PL(A) = 2.2
Ę	-5	grey-brown then grey laminite with approximately 25% fine sandstone lamination			Ĩ					
_		ammation		-			с	100	93	PL(A) = 1.2
128									35	
Ē						5.71-6.0m: J85°, un, ro, fe, cly				
F	-6									PL(A) = 1.4
12/						6.25 & 6.3m: B5°, fe , 6.42m: J85°, un, ro, fe				
Ē						6.52m: J45°, pl, ro, fe 6.58m: B0°, cly, 5mm				
Ę	-7									-
-			i i i i i 🗔							PL(A) = 1.6
126										
F										
F	-8									
125							с	100	100	PL(A) = 2.3
ļ										
E	-9					~				
F	~					ſ				
124										PL(A) = 1.5
F										
ŀ							С	100	95	

RIG: DT 100

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: SM

LOGGED: SI

CASING: HW to 1.0m

TYPE OF BORING:Solid flight auger to 1.0m;Rotary to 3.33m;NMLC-Coring to 15.9m**WATER OBSERVATIONS:**No free groundwater observed whilst augering

REMARKS: Standpipe piezometer installed: Slotted 15.9 to 3.0m, Solid 3.0 to 0.0m, Bentonite 2.0 to 0.0m, Quickset concrete 0.3 to 0.0m with gatic cover

	SAMPLIN	G & IN SITU TESTIN	G LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	 PL(D) Point load diametral test ls(50) (MPa) 	NOUGIAS Partners
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sam	ple ⊳	Water seep	S Standard penetration test	
E Environmental	sample 📱	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
E Environmental	sample 📱	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

SURFACE LEVEL: 133.4 AHD **EASTING:** 314974 **NORTHING:** 6265702 DIP/AZIMUTH: 90°/--

BORE No: 404 PROJECT No: 84335.00 **DATE:** 19 - 20/6/2014 SHEET 2 OF 2

Τ		Description	Degree of Weathering ﷺ ≩ ≩ ፩ ፼ 땵	.e	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
ᆋ	Depth (m)	of		Log	Strength Very Low Medium High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
			H N N N N N N N N N N N N N N N N N N N	0	Very Very Very Very Ex H		S - Shear F - Fault	ŕ	сē	Ϋ́ς	Comments
122 123	11 11.55 -	LAMINITE - high strength, slightly weathered then fresh, slightly fractured and unbroken, light grey-brown then grey laminite with approximately 25% fine sandstone lamination <i>(continued)</i> SHALE - very low then medium strength, fresh, slightly fractured and unbroken, grey shale					11.44m: B5°, cly 11.56-11.66m: Sz 11.66m: J55°, pl, sm, cln	С	100		PL(A) = 1.5 PL(A) = 1.9
121	12	and and an and a second and a					12.28m: J20°, st, ro, cln 12.34m: J45°, pl, sm, cln 12.53-12.63m: J80°, pl, sm, cln 12.76m: J30°- 35°, cu,				PL(A) = 0.5
120							13.65m: J45°, pl, sm,				PL(A) = 0.9
	14						14.3m: J45°- 55°, cu, sm, cln	С	100	100	PL(A) = 0.7
81.1	15										PL(A) = 0.7
F	15.9 16	Bore discontinued at 15.9m					15.78m: J35°, pl, sm, \cln				
117											
116	17										
F	18										
115	19										
114											
	: DT 10	00 DRILL	.er: SM	<u> </u>		GED: SI	Casing: HW	/ to 1	.0m		

TYPE OF BORING: Solid flight auger to 1.0m; Rotary to 3.33m; NMLC-Coring to 15.9m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe piezometer installed: Slotted 15.9 to 3.0m, Solid 3.0 to 0.0m, Bentonite 2.0 to 0.0m, Quickset concrete 0.3 to 0.0m with gatic cover

	SAM	PLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		Dollaise Partnere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	¥	Water level	V	Shear vane (kPa)	1	Geotechnics Environment Groundwater

SURFACE LEVEL: 130.7 AHD **EASTING:** 314996 **NORTHING:** 6265733 **NORTHING:** 6265733 **DIP/AZIMUTH:** 90°/--

BORE No: 405 PROJECT No: 84335.00 **DATE:** 19/6/2014 SHEET 1 OF 2

-		Description	Degree of Weathering	. <u>e</u>	Rock Strength	Fracture	Discontinuities		· ·	<u> </u>	n Situ Testing
	epth m)	of		Graphic Log		Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	ROD %	Test Result &
		Strata	A M M M M M M M M M M M M M M M M M M M	-	Very Very Very Very Very Very	0.10			٥æ	<u>ш</u>	Comments
F	0.15	Δ SPHALT		\searrow				A/E]		PID<5
Ē	0.35	FILLING - possible asphalt fall in,		\searrow							
Ł	0.7	humid		\square	• · · · · · · ·		Note: Unless otherwise	A/E			PID<5
Ļ		CLAY - stiff, red-brown, slightly gravelly clay. Gravel is fine to		· · · · ·			stated, rock is fractured along rough planar				
-1		medium angular shale/mudstone		• • • •			bedding planes dipping 0°- 10°	S			20/150mm refusal
E		LAMINITE - extremely low strength,		• • • • • • • • •			0 - 10	A/E*	1		
ŀ	1.57	light grey laminite LAMINITE - medium strength, highly	┥┥╻╴╴╴╴	· · · · ·	┖┿┿┓╎╎╎╎╎			_			
F		weathered, fragmented to fractured		• • • • • • • • •			1.63 & 1.78m: J35°, he	E	100	81	PL(A) = 0.5
-2		then slightly fractured, light grey to grey-brown laminite		· · · · · · · · ·		7 ; ;;	1.99-2.2m: fg	С			
Ļ	2.25	g ,		\bowtie			2.2m: CORE LOSS:				
F	2.35						150mm 2.5m: J45°, pl, sm, fe				
Ē				· · · · ·		╎╙──┫╎	2.66m: B5°, fe	С	87	52	PL(A) = 0.
-3				• • • •							. ,
F				· · · · ·		╎┍╼┦╎	3.1 & 3.2m: B5°, cly				
Ē				· · · · ·							
Ļ	3.7		╡╎┖┿╍┪╎╎╎	••••			3.5-3.77m: B (x3) 0°, fe	С	100	67	PL(A) = 0.
-		LAMINITE - medium strength, moderately to slightly weathered,				j G i i	3.9-4.0m: J85°, un, ro,				
-4		fractured and slightly fractured, grey-brown laminite with		· · · ·		┢┿┛╎╎	fe				
Ļ		approximately 30% fine sandstone		· · · · ·			4.15m: J25°, pl, ro, fe 4.2-4.55m: B (x5) 0°, fe				PL(A) = 0.
Ę		laminations					∖ 4.6m: J35°, pl, ro, fe		100	01	
E				• • • • • • • •			^L 4.65-5.23m: B (x12) 0°-	С	100	81	
-5				•••••		i ii	5°, fe				PL(A) = 0.
F				••••			5.27m: J30°, pl, ro, fe				
				· · · · ·			5.5-5.73m: B's 0°, fe				
-	5.8			···· ×			5.65m: J55°, pl, ro, fe				
-6	6.0	LAMINITE - medium and high		••••	· · · · L , · ·		_\70mm				
E		strength, moderately to slightly		· · · · ·			¹ 5.8-6.0m: J80°, pl, ro, fe 6.05-6.5m: B (x11) 0°, fe	С	95	84	PL(A) = 1.
ŀ		weathered then fresh stained, fractured then slightly fractured,		· · · · · · · · · ·		Li ii	, 6.5m: J45°- 70°, cu, ro,				
Ē		grey-brown laminite with approximately 20% fine sandstone		· · · ·			\ fe				
-7		laminations		· · · · ·			6.6m: J45°, pl, sm, cly 6.8-6.95m: J (x3) 55°-				
F				· · · · ·		╎ݱ┓╎╎	\ 60°, pl, ro, cly -7.07 & 7.15m: J70° &				
Ē				 		╎╎┛╎╎	80°, he 7.4m: F30°, pl, sm, fe				PL(A) = 0.
F				· · · · ·		FL:	[~] 7.55 & 7.6m: J70°, pl,				
F				••••			∖ro, fe 7.73m: F30°, pl, sm, cln				
-8				· · · ·			8.1m: J70°, pl, ro, fe &				
ŧ				· · · · · · · · · ·			J80°, pl, ro, fe 8.36m: B0°, cly, 5mm	с	100	96	
F											PL(A) = 1.
	8.75	SHALE - medium then medium to	 				8.7m: J85°, pl, sm, fe				
-9		high strength, fresh, slightly fractured and unbroken, grey shale				ii G i	9.06m: J35°, pl, sm, cln				
ŧ		with a trace of fine sandstone									PL(A) = 0.
E		lamination				i L	0.55m; 180° al ra al-				
F							9.55m: J80°, pl, ro, cln 9.7-10.10m: J85°, pl, ro,				
t				<u>t</u>			cln	С	100	100	

RIG: DT 100

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: SM

LOGGED: SI/JRP

CASING: HW to 1.0m

TYPE OF BORING: Solid flight auger to 1.0m; Rotary to 15.7m; NMLC-Coring to 16.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: Water loss at about 9.8m. *BD1/190614 collected at 1.0-1.2m

	SAMP	LING	3 & IN SITU TESTING	LEGE	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			_		rtners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)					rtnere
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		PUUY		ј Гаі	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	17	_	·		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Env	ironment	Groundwater
										2.2.2

SURFACE LEVEL: 130.7 AHD **EASTING:** 314996 **NORTHING:** 6265733 **DIP/AZIMUTH:** 90°/-- BORE No: 405 PROJECT No: 84335.00 DATE: 19/6/2014 SHEET 2 OF 2

		Description	Degree of Weathering ie	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
R	Depth (m)	of Strata	Degree of Weathering La P S S 2 E	Strength Very Low Medium Medium Very High Kery High Kery High Kery High Kery Low	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - - - - - - - - - - - - - - - -	SHALE - medium then medium to high strength, fresh, slightly fractured and unbroken, grey shale with a trace of fine sandstone lamination <i>(continued)</i>				10.8m: J55°- 70°, cu, ro, cln 10.9-11.25m: J70°- 85°, cu, ro, cly 11.25m: B0°, cly	С		100	PL(A) = 0.7
118 119 119	- 12 12 					12.15-12.35m: J (x4) 35°- 55°, pl, ro, cln 12.45m: J30°, pl, ro, Cz, 10mm	С	100	87	PL(A) = 1.3 PL(A) = 0.9
	- 13 - 14 - 14.4	LAMINITE - high strength, fresh,				13m: J45°, pl, sm, cln 13.8m: J85°, pl, sm, cln 14m: J65°, pl, sm, cln	С	100	99	PL(A) = 1.1
115 11 116	- 15 15 	slightly fractured and unbroken, light grey to grey laminite with approximately 40% fine sandstone laminations and beds				15.4-15.5m: J85°, un, ro, cln				PL(A) = 1.3 PL(A) = 1.9
111	- 17 - 17 - 18 - 18 - 19	Bore discontinued at 16.0m								

RIG: DT 100

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: SM

LOGGED: SI/JRP

CASING: HW to 1.0m

TYPE OF BORING:Solid flight auger to 1.0m;Rotary to 15.7m;NMLC-Coring to 16.0mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:Water loss at about 9.8m.*BD1/190614 collected at 1.0-1.2m

SAM	PLIN	G & IN SITU TESTING	LEG				
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		-	Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)	. 1		DAIIAISE DSTTAARE
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			Dugias rai liicis
D Disturbed sample	⊳	Water seep	S	Standard penetration test			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Ι.		Geotechnics Environment Groundwater

SURFACE LEVEL: 132.59 AHD BORE No: 501 EASTING: 314911 NORTHING: 6265720 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 25/3/2015 SHEET 1 OF 3

Dert	Description	Degree of Weathering	ic _	Rock Strength	Fracture Spacing	Discontinuities	Sa	ampli	ng & I	n Situ Testing
Depth (m)	Of		Graphic Log		(m)	B - Bedding J - Joint S - Shear F - Fault	Type	č. %	RQD %	Test Results &
	Strata FILLING - crushed shale and	M H M N N N N N N N N N N N N N N N N N			0.01	S - Snear F - Fault	-	0 %	œ	Comments
E 0.:			\bigotimes				A			
ļ.	FILLING - brown, silty clay and crushed shale filling, humid		\bigotimes			Note: Unless otherwise	A			
2-	orabiled shale ming, harma		\bigotimes			stated, rock is fractured				
-1 1.0	LAMINITE - very low strength, light		\bowtie			along rough planar bedding dipping 0°- 10°	A			
E	grey-brown laminite									
. 1.						1.5m: CORE LOSS:				
2 1.0	strength, highly weathered,		· · · ·			\ 100mm				PL(A) = 1.2
-2	fragmented to fractured, light grey and brown laminite with high					¹ 1.6-1.83m: fg, fe	С	55	0	
2.2	atronath iron comented hands		$ \ge $			2m: CORE LOSS:	<u> </u>			
2.4	LAMINITE - medium and high		· · · · ·			2.2-2.4m: fg 2.4m: J30°, un, ro, fe				PL(A) = 0.5
2	strength, moderately weathered, fractured, grey-brown laminite with					2.5 & 2.55m: J45°, pl, ro, cly				PL(A) = 1.5
-3	approximately 30% fine sandstone laminations and some clay bands		· · · · ·			2.62, 2.7 & 2.77m: J25°-				
-						2.85m: J45°, pl, sm, cly 3.1m: J30°, pl, ro, cly				
[· · · · ·			3.14-3.56m: B, fe, cly	с	100	18	
<u>i</u> - -						, 3.7-3.8m: B (x2) 5°, fe				PL(A) = 1.1
4			••••	┿┿┿┫╦╎╎╎]	3.8-3.9m: J85°, pl, ro, fe 3.9m: B10°, cly, 5mm &				
- 4.:	LAMINITE - medium strength,		•••• ••••			J75°- 80°, cu, ro, fe				DL(A) = 0.0
E	moderately then slightly weathered,					4.13m: J60°, un, ro, cly 4.2m: J30° & 75°, st, ro,				PL(A) = 0.8
<u>}</u>	fractured, grey-brown laminite with approximately 30% fine sandstone		· · · · ·			cln 4.23m: B5°, cly				
-5	laminations and some clay bands				li Liji i i	4.33m: J50°, un, ro, cln 4.56m: B0°, cly, 10mm				
-			· · · · ·			4.66m: J45°, un, ro, cln 4.75-5.5m: B0°- 5°, fe				PL(A) = 0.6
E						℃5.25m: B5°, cly, 10mm	с	100	40	
<u>i</u> - -		╎╎┖┓╎╎	· · · · ·	╒╤╤┫┆╎┆╎	┡━┪╎┊╎	5.5-5.75m: J70°, cu, ro, Cz, 30mm				
-6			· · · ·	╺┿┿┿┩╎╵╵╵╵ ┎┷┿┿┩╵╵╵╵╵		5.8m: J (x2) 45° & 70°, st, ro, cly				
-			· · · · ·			6.0-6.05m: cly 6.1-6.3m: B0°- 5°, fe				PL(A) = 0.9
E					╎╷╷	6.35m: J35°, pl, ro, fe				(/ .)
-			· · · · ·			6.45 & 6.5m: J60°- 70°, pl, ro, fe & Cz				
- 6.8	SHALE - high then medium to high					6.75-6.8m: Cz				PL(A) = 0.9
-	strength, fresh stained then fresh, slightly fractured, grey shale with				╎╘┱╹╎╴	7.1-7.3m: B5°, fe				1 E(71) = 0.5
E	approximately 5-10% fine sandstone laminations									
i [i i <u>L</u> i		С	100	78	
						7.73m: J70°, pl, ro, fe 7.8m: B5°, fe				
-8										PL(A) = 1.1
F						0.45 0.55 0.0 75				
i[8.45, 8.55 & 8.75m: J55°- 60°, pl, ro, fe				
F_										
-9										
ŀ										PL(A) = 1
<u>i</u>							С	97	85	
10.0						9.7, 9.8 & 9.9m: J30°, pl, sm, cln				
IG: Sco		LER: LC			GED: SI	CASING: HW				

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: LC

LOGGED: SI

CASING: HW to 1.5m

TYPE OF BORING: Solid flight auger to 1.5m; NMLC-Coring to 24.0m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAI	MPLING	6 & IN SITU TESTING			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

SURFACE LEVEL: 132.59 AHD BORE No: 501 EASTING: 314911 NORTHING: 6265720 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 25/3/2015 SHEET 2 OF 3

		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	<u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
R	Depth (m)	of		Graph	Strength Very Low Very Low Medium Medium High Ex High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core	RQD %	Test Results &
	10.05	Strata SHALE - medium and high strength,	E S W W	~			10m: CORE LOSS:	-	0 2	Ľ.	Comments
	-11	fresh, slightly fractured and unbroken, dark grey shale					50mm 10.05 & 10.15-10.20m: J30°- 35°, pl, sm, fe 10.55m: J45° & 60°, st, ti 11.33m: J30°, pl, sm, cln 11.5-11.7m: J80°, pl, sm, si	С	97	85	PL(A) = 1.3 PL(A) = 0.8
9	· 12 · 13 13.45 ·	LAMINITE - high strength, fresh,					11.94m: J85°, pl, sm, cln 12.94m: J45°, pl, sm, cln 13.05m: J60°, pl, sm, Cz, 10mm	с	100	100	PL(A) = 1.3
Ĩ	-	slightly fractured and unbroken, light grey and grey, laminite with					13.3m: B5°, Cz, 10mm 13.5m: J30° & 45°, st,				PL(A) = 3.5
	- 14	approximately 50% fine sandstone laminations and beds 13.6m: very high strength sandstone		· · · · ·			ro, cin				PL(A) = 2.2
116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 15						16.1-16.2m: J60°- 70°, _cu, ro, cln 16.3 & 16.33m: J35°, pl, _ro, cln 16.5 ± 16.65m; J05°, up	С	100	99	PL(A) = 1.6
							^L 16.55-16.65m: J85°, un, ro, cln				PL(A) = 1.8
	- 17 17.55 - - 18	SANDSTONE - high strength, fresh, slightly fractured, light grey, fine to medium grained sandstone					17.15m: Fault 70°, pl, ro, cly, 5mm 17.5m: J25°, pl, ro, cly, 10mm 17.9m: J70°, ti 18.05-18.3m: Fault, 75°- 90°, ti	С	100	97	PL(A) = 1.5 PL(A) = 1.2
	- 19 19.1 -	SANDSTONE - medium then high strength, fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone					18.6-18.65m: Sz 18.8m: J30°, pl, ro, cln 19.12m: J60°, pl, ro, cln				PL(A) = 1.2
								С	100	100	

RIG: Scout 2

DRILLER: LC

LOGGED: SI

CASING: HW to 1.5m

TYPE OF BORING: Solid flight auger to 1.5m; NMLC-Coring to 24.0m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SA	MPLING	6 & IN SITU TESTIN	IG LEGI	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		
BL	Block sample	U,	Tube sample (x mm dia.) PL(C) Point load diametral test Is(50) (MPa)		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	e ¥	Water level	V	Shear vane (kPa)		
						_	

CLIENT: PROJECT: LOCATION: Castle Street, Castle Hill

QIC Pty Ltd

Castle Tower Expansion Project

SURFACE LEVEL: 132.59 AHD BORE No: 501 EASTING: 314911 NORTHING: 6265720 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 25/3/2015 SHEET 3 OF 3

		Description	Degree of Weathering ≞ ≩ ≩ § ∞ ਦ	<u>ں</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
ᆋ	Depth (m)	of		Log	Very Low Very Low Nedwin Nedwin Very High High Ker High Kater	Spacing (m)	B - Bedding J - Joint	Type	ore . %	RQD %	Test Results
			M H M S S H	פ			S - Shear F - Fault	Ţ	C S	R0 %	& Comments
111	21	SANDSTONE - medium then high strength, fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone (continued)					20.85m: B15°, cly vn, ti 21.2m: B0°, cbs co	С	100		PL(A) = 1.4 PL(A) = 1.4
110	22	22.0m: some siltstone laminations at 5°- 10°					21.7m: J30°, pl, ro, cln				PL(A) = 1.7
	23							С	100	100	PL(A) = 1.8
ĘĘ	24 24.0	Bore discontinued at 24.0m									
	25										
107	26										
106											
	27										
105	28										
	29										
103					iiiiii						

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: LC

LOGGED: SI

CASING: HW to 1.5m

TYPE OF BORING: Solid flight auger to 1.5m; NMLC-Coring to 24.0m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAME	PLIN	G & IN SITU TESTING	LEGF	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	1.	Inningiae Partnere
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
· · ·						

SURFACE LEVEL: 127.07 AHD BORE No: 502 EASTING: 314973 NORTHING: 6265812 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 24/3/2015 SHEET 1 OF 2

\square		Description	Degree of Weathering	ic	Rock Strength	Fracture	Discontinuities		· ·	-	n Situ Testing
ᆋ	Depth (m)	of		Log	Very Low Very Low High Very High Ex High Aater	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	D 2 2 2 2 2	Test Results &
			FR S W H W W	U	Ex Low Very Lov Low Medium Very Hig Ex High	0.01 0.10 0.10 1.00	S - Shear F - Fault	F	ŭğ	ж°,	Comments
12	0.2 -	ROADBASE GRAVEL FILLING FILLING - light grey-brown, silty clay and crushed rock fragments filling						A			
		LAMINITE - extremely low strength, light grey-brown laminite					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	S			3,2,2 N = 4
	·3 3.5 -	LAMINITE - medium to high then					2.5m: CORE LOSS: 1000mm 3.5-3.68m: fg	6	55	0	
	4	medium strength, highly and slightly weathered, fragmented to fractured, grey-brown laminite with approximately 20% fine sandstone laminations and some clay bands					3.68-3.9m: B0°, fe 3.9-4.0m: fg 4.1m: J40°, pl, ro, cly, 5mm 4.2m: J55°, un, ro, cly 4.3m: J50°, un, ro, fe 4.45m: J45° pl sm cly	С	55	0	PL(A) = 1.9 PL(A) = 0.9
	5 5.5 6	5.16-5.37m: light grey SHALE - medium strength, slightly weathered and fresh stained, fractured and slightly fractured, grey-brown then grey, shale with approximately 5-10% fine sandstone laminations					4.5m: J45°, pl, sn, cly 4.5m: J50°, pl, ro, cly 4.56m: J45°, pl, ro, cly 4.63-4.85m: fg, fe 4.9m: B0°, cly, 20mm 5.16-5.37m: Ds 5.44m: J70°, pl, ro, fe 5.66m: J70°, pl, ro, fe 5.75m: B0°, cly, 20mm 5.87m: B0°, fe, cly, 20mm 5.98m: J45°, pl, ro, fe 6.05 & 6.10m: B0°, fe,	с	100	26	
	7 7.15						6.05 & 6.10m: B0°, fe, cly, 2-10mm 6.22m: J35°, fe, he 6.3m: J60°, fe, he 6.38m: J45°, pl, ro, fe 6.52-7.0m: B0°, fe 7m: CORE LOSS: J150mm	с	92	33	PL(A) = 0.5
	7.5 -	SHALE - medium and high strength, fresh stained then fresh, slightly fractured and unbroken, grey to dark grey shale					7.15-7.3m: B0°- 5°, fe 7.33m: J45°, pl, sm, cln 7.4-7.53m: fg, fe 7.8-8.0m: B0°, fe 8m: J45°, pl, sm, cln 8.15m: J65°, pl, ro, fe				PL(A) = 1.3
	9						8.35m: B10°, fe 8.82m: J35°, pl, sm, cln	с	100	100	PL(A) = 0.8
							9.54-9.7m: 70°- 90°, cu, ro, cln				PL(A) = 1.2

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: LC

LOGGED: SI

CASING: HW to 2.6m

TYPE OF BORING: Solid flight auger to 2.5m; NMLC-Coring to 19.7m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

		SAMPI	LING	3 & IN SITU TESTING	LEGE	END										
	Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)										
	В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			oug	_		_				
	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	1.1		niir	▋Ē		. /			no	rc
	С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			UUY			, ,	га			5
	D	Disturbed sample	⊳	Water seep	S	Standard penetration test	17									
	E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geo	technics	1	Envi	ron	ment	I Gr	roundw	ater
•							 _	000						, 0,	ounan	aro

SURFACE LEVEL: 127.07 AHD BORE No: 502 EASTING: 314973 NORTHING: 6265812 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 24/3/2015 SHEET 2 OF 2

	Donth	Description	Degree of Weathering		Rock Strength	Fracture Spacing	Discontinuities	Sa	ampli	ng & l	n Situ Testing
Ż	Depth (m)	of Strata	Degree of Weathering ∰ ≩ ≩ § ∞ ∰		Strength Medium Ex High Ind	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core ec. %	RQD %	Test Results
111		SHALE - medium and high strength, fresh stained then fresh, slightly fractured and unbroken, grey to dark grey shale <i>(continued)</i>	EW HWW SW SW FR					с	100		Comments PL(A) = 1.2
115	-11 -12 -13 -13,4-						10.88m: J70°- 80-°, cu, ro, cln 11.05m: J45°, sl, sm, cln 11.25m: J35°, pl, sm, cln 11.38m: J25°, pl, sm, cln 12.8m: J85°, pl, ro, cln 13.23m: J70°, pl, sm, cln	С	100	100	PL(A) = 1.2 PL(A) = 0.8
		SILTSTONE - high strength, fresh, slightly fractured to unbroken, light grey siltstone		· ·			cln				PL(A) = 1.2
	- 14 14.2 -	LAMINITE - high strength, fresh, slightly fractured and unbroken, light grey to grey, laminite. Approximately 50% fine sandstone laminations and beds		·							PL(A) = 1.9
	- 15						15.52m: J60°, sl, sm,	с	100	99	PL(A) = 1.6
	- 16						Sz, 20mm 15.85m: J55°, pl, sm, cln				PL(A) = 2.1
	- 17	17.0-17.45m: fractured		· · · · ·		لبر ح	17.08-17.12m: J70°, un, 】ro. cln				
	17.45 - - 18	SANDSTONE - high strength, fresh, unbroken, fine to medium grained, light grey sandstone					17.15m: J60°, un, ro, cln 17.25m: J80°, un, ro, cln 17.33m: J70°, he 17.4-17.44m: Sz 17.44m: J45°, pl, sm, cly	С	100	92	PL(A) = 1.7
	- 19 19.25	18.95-19.28m: grey, some siltstone laminations 19.25m: medium grained									PL(A) = 1.8
	10.7										PL(A) = 1.8
E	19.7	Bore discontinued at 19.7m									

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: LC

LOGGED: SI

CASING: HW to 2.6m

TYPE OF BORING: Solid flight auger to 2.5m; NMLC-Coring to 19.7m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAN	IPLING	6 & IN SITU TESTIN	IG LEGE	IND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BL	K Block sample	U,	Tube sample (x mm dia.	.) PL(D) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	¥	Water level	V	Shear vane (kPa)	
E	Environmental sample	ŧ	vvater ievei	v	Shear vane (KPa)	

SURFACE LEVEL: 133.17 AHD BORE No: 503 **EASTING:** 314960 **NORTHING:** 6265695 **NORTHING:** 6265695 **DIP/AZIMUTH:** 90°/--

PROJECT No: 84335.02 **DATE:** 25/3/2015 SHEET 1 OF 3

Π		Description	Degree of	<u>u</u>	Rock Strength	Fracture	Discontinuities				n Situ Testing
ᆋ	Depth (m)	of	Weathering	aphi		Spacing (m)	B - Bedding J - Joint	e	e%	RQD %	Test Results
	(11)	Strata	E S W W W	<u>ଜ</u> ୍	Ex Low Very Low Medium High Very High Ex High	0.010	S - Shear F - Fault	Type	Rec	₿ 8%	& Comments
133	· 0.1	ASPHALTIC CONCRETE		\sim							
	0.2	FILLING - light grey-brown, silty clay filling with some sand					Note: Unless otherwise stated, defects are				
	0.8	SILTY CLAY - apparently very stiff, light grey-brown, silty clay, moist					rough planar bedding dipping 0°- 10°				
132	-1	LAMINITE - extremely low to very low strength, light grey laminite		· · · · ·							
	1.3 1.62	LAMINITE - extremely low strength, extremely to highly weathered,		\boxtimes			1.3m: CORE LOSS: 320mm				
131	-2	highly frågmented to fractured, light grey to grey laminite with some medium strength ironstone cemented bands		· · · · ·			1.85-2.45m: Ds/cly	с	77	0	
	· · ·			· · · · ·			2.68-3.0m: fg, fe				
130	-3 3.0	LAMINITE - medium and high strength, highly then slightly weathered to fresh stained, highly fractured, grey-brown laminite,	, 6 , , , , , , , , , , , , , , , , , , ,	· · · · ·			3.07m: J60°, fe, he 3.17m: B0°, cly, 5mm 3.19m: J30°, pl, ro, cly, 2mm				PL(A) = 1.2
	-4	approximately 60% shale, 40% fine grained sandstone laminations		· · · · · · · · · · · · · · · · · · ·			3.25-3.35m: cly 3.4-3.69m: B0°- 5°, fe 3.71m: J30°, pl, ro	С	100	18	PL(A) = 0.7
129	4.25	LAMINITE - high strength, slightly weathered to fresh stained, fractured		· · · · ·			↓3.79m: B0°, ir, ro, cly, 10mm ↓4.04m: J50°, ir, ro, fe ↓4.25m: B0°, fe				PL(A) = 1.1
127 128 128	- 5	and slightly fractured, grey-brown laminite, approximately 30% fine grained sandstone laminations					4.68m: B0°, pl, fe, 5mm 5.04m: B10°, fe 5.48m: J35°, pl, ro, fe 5.58m: J30°, pl, ro, fe 5.91m: B0°, fe 5.91m: B0°, cly, 10mm 5.93m: J30°, ir, ro 6.03m: B10°, fe	С	100	82	PL(A) = 1.6
	6.45 -7	SHALE - high strength, fresh, unbroken, grey shale with approximately 5-10% fine grained sandstone laminations					^L 6.13m: J45°, pl, ro, cly,15mm				PL(A) = 1.4
126											PL(A) = 1.4
125	- 8	8.45m: 5% fine grained sandstone laminations						С	100	99	PL(A) = 1.5
124											PL(A) = 1.8

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: SS TYPE OF BORING: NMLC-Coring from 1.3m to 24.0m LOGGED: IW/SI

CASING: HW to 1.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAI	MPLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	NOUGUAE Partnere
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 133.17 AHD BORE No: 503 EASTING: 314960 NORTHING: 6265695 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 25/3/2015 SHEET 2 OF 3

	_	Description	Degree of Weathering	. <u>e</u>	Rock Strength	Fracture	Discontinuities	Sa			In Situ Testing
ᆋ	Depth (m)	of		Graphic Log	Nate Nate	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
		Strata	M M M M M M M M M M M M M M M M M M M	0	Low Very Very Very Ex H	0.05	S - Shear F - Fault	ŕ	Q &	Ψ,	Comments
123		SHALE - high strength, fresh, unbroken, grey shale with approximately 5-10% fine grained sandstone laminations <i>(continued)</i>						С	100	99	PL(A) = 1.2
	• 11 11.47 - • 12	SHALE - medium strength, fresh, slightly fractured and unbroken, dark grey shale					11.39m: J30°, pl, sm 11.98m: J20°, pl, sm, cln 12.23-12.3m: Sz 12.32m: J30°, ir, ro 12.35m: J45°, pl, sm 12.42m: J45°, pl, sm	С	100	92	PL(A) = 0.9 PL(A) = 0.7
	- 13 - 14						13.01m: J60°, pl, sm, cln 13.67m: J40°, pl, sm, cly 13.85m: J45°, pl, sm,				PL(A) = 0.5
	- 15 15.38 -	LAMINITE - high strength, fresh, slightly fractured and unbroken, light grey and grey laminite, approximately 40% shale, 60% fine					cln 14.91m: J55°, pl, sm, cln 15.27-15.38m: J90°, ir, ro 15.57m: J50°, pl, sm, cln	С	100	96	PL(A) = 0.6 PL(A) = 2.2
116	- 16 - 17 17.46	approximately 40% shale, 60% fine grained sandstone laminations and beds							0.8	07	PL(A) = 1.9 PL(A) = 2
115	- 18 - 19						17.46m: CORE LOSS: 70mm 17.87m: J35°, pl, ro, cly	С	98	97	PL(A) = 2.2
	19.53 -	SANDSTONE - description next page						С	100	95	PL(A) = 1.3

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: SS

LOGGED: IW/SI

CASING: HW to 1.1m

TYPE OF BORING: NMLC-Coring from 1.3m to 24.0m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS**:

	SAMPLIN	IG & IN SITU TES	TING LEG	END					
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sample	P	Piston sample		A) Point load axial test Is(50) (MPa)			Dougla		
BLK Block sample	U	Tube sample (x mm)	dia.) PL(I	D) Point load diametral test Is(50) (MPa)					
C Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)		/ / 1	Budgia		
D Disturbed san	nple D	Water seep	S	Standard penetration test					
E Environmenta	İ sample 🛛 📱	Water level	V	Shear vane (kPa)			Geotechnics Er	nviron	ment
					_	_			

SURFACE LEVEL: 133.17 AHD BORE No: 503 **EASTING:** 314960 **NORTHING:** 6265695 **NORTHING:** 6265695 **DIP/AZIMUTH:** 90°/--

PROJECT No: 84335.02 DATE: 25/3/2015 SHEET 3 OF 3

		Description	Degree of Weathering	<u>io</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	In Situ Testing
Ł	Depth (m)	of	Wednering	Log	Strength Very Low Very Low High High Kater	Spacing (m)	B - Bedding J - Joint	Type	sre %	RQD %	Test Results &
			FR S W W W	U			S - Shear F - Fault	Ţ	ပိမ္မ	R ~	∝ Comments
112 113	21	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey, fine to medium grained sandstone <i>(continued)</i> 20.6-20.7m: medium strength, moderately weathered shale band					20.69m: B0°, pl, fe, 20mm	С	100		PL(A) = 2.6 PL(A) = 1.3
ţ		SANDSTONE - high strength, fresh, slightly fractured, light grey, medium					21.7-21.98m: J80°, ir, ro, he				
111	22	slightly fractured, light grey, medium to coarse grained sandstone				 	22.12m: B20°, cly vn, ti				
							22.48m: B20°, pl, ro, ti				PL(A) = 1.8
Ē	23						22.81m: B10°, pl, ro, cly, 5mm	с	100	95	
110						L L 	23.24m: B20°, pl, ro, cln				PL(A) = 2.1
109	24 24.0	Bore discontinued at 24.0m									
108	25										
10/	26										
106	27										
105	28										
104	29										
E											

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: SS TYPE OF BORING: NMLC-Coring from 1.3m to 24.0m LOGGED: IW/SI

CASING: HW to 1.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAM	IPLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		Dolidiae Partnere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-						 _	

SURFACE LEVEL: 129.25 AHD BORE No: 504 **EASTING:** 315022 **NORTHING:** 6265778 **NORTHING:** 6265778 **DIP/AZIMUTH:** 90°/--

PROJECT No: 84335.02 **DATE:** 23/3/2015 SHEET 1 OF 3

Π		Description	Degree of Weathering	jc	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
ᆋ	Depth (m)	of	Weathering	Log	Very Low Very Low Ned dium High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	Da °	Test Results
		Strata	FR S W W W	U	Ex Lo Very Low High Ex Hij	0.05 0.10 1.00	S - Shear F - Fault	Ţ	с В В	R ~	& Comments
F	0.1	ASPHALTIC CONCRETE		<u>н. </u> С				А			
129	0.2	ROADBASE - grey, sandy gravel (with some silt, damp									
128	1 1.0-	SANDY SILT - brown and light brown, sandy silt with trace of ironstone gravel, damp - probable weathered shale at 0.6m / LAMINITE - extremely low to very low strength, light grey and		· · · · · · · · · · · · · · · · · · ·			Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	A A S			12,19,25/50mm refusal
ŧĒ	1.5	orange-brown, laminite with some		· · · · ·							PL(A) = 1.3
	2 2.5 - 3	LAMINITE - high strength, moderately weathered, fractured, light grey-brown, laminite with approximately 30% fine sandstone laminations LAMINITE - medium strength, moderately then slightly weathered, fractured to slightly fractured, grey-brown, laminite with approximately 20% fine sandstone					1.8-1.85m: J90°- 45°, st, ro, cly co 2.05m: J45° & 80°, st, ro, cly vn 2.26m: J30°, pl, ro, fe, cly 2.45m: J45°, pl, ro, fe 2.56-2.64m: J70°, un, ro, partially he, fe stn 2.73m: J35°, pl, ro, fe 2.8 & 2.9m: J45°- 0°, st,	С	100	75	PL(A) = 1.3
		laminations and some clay bands		· · · · · · · · · · · · · · ·			ro, fe, cly vn 2.94m: J50°, ir, ro, cly co, 2mm 3.35-3.4m: J55°, un, ro, cly co, 2mm, fe				PL(A) = 0.6
	4						3.51-3.55m: Cz 3.75m: J35°, pl, sm, partially he, fe stn 3.84-3.92m & 3.94-4.07m: J's (x5) 65°- 75°, pl, ro, fe stn, cly 4.17 & 4.2m: J45°, pl, ro, fe 4.38m: J40°, ir, ro, cly, 3mm	С	100	70	PL(A) = 0.6
				· · · · · · · · · · · · · · ·			4.64m: J70°, pl, ro, fe 4.77-4.82m: Ds 4.82-5.42m: J90°, ir, fe, partially he				PL(A) = 0.6
123	6 7						5.48m: J20°, pl, ro, cly 5.64-5.9m: J (x4) 45°- 80°, un, ro, cly vn, fe stn 6.2m & 6.35m: B0°, fe 6.5m: J50°, pl, ro, cly vn 6.75m: J30°, un, ro, cln 6.88-6.92m: J30°, pl, sm, Cz, 30mm	С	100	55	PL(A) = 0.5
122				· · · · · · · · · · · · · · ·			[∼] 7.15m: J45°, pl, ro, fe 7.33m: J30°, he, fe 7.54 & 7.6m: J45°, pl, ro, fe/he				PL(A) = 0.7
	8 8.8- 9	SHALE - medium to high and high strength, fresh, fragmented to fractured and slightly fractured, grey shale with some very low and very low to low strength bands along shear zone					8.7m: J35°, fe, he 8.9m: J30°, pl, sm, cln 9.07m: J45°, pl, sm, cln 9.2-9.2m: J50°- 80°, cu, sm, cln 9.31m: J45°, pl, sm, cln 9.4-9.55m: J (x3) 35°-	С	100	75	PL(A) = 0.6
							50°, pl, sm, cln 9.73m: B0°, cly, 5mm				PL(A) = 1.4

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: LC

LOGGED: MP/SI

CASING: HW to 1.2m

TYPE OF BORING: Solid flight auger to 1.0m; Rotary drilling to 1.5m; NMLC-Coring to 21.0m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAM	PLIN	3 & IN SITU TESTING	LEG	END									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Doug	/					
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test Is(50) (MPa)				7/	26		Jar	The	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									J
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				,					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		1	Geotechnics	· 1	Envir	onr	ment	Groundwa	ater
	· · · · ·						_		· •		0.11		C , C G // G // C	

QIC Pty Ltd Castle Tower Expansion Project

LOCATION: Castle Street, Castle Hill

CLIENT:

PROJECT:

SURFACE LEVEL: 129.25 AHD BORE No: 504 **EASTING:** 315022 **NORTHING:** 6265778 **NOR I HING:** 6265778 **DIP/AZIMUTH:** 90°/--

PROJECT No: 84335.02 DATE: 23/3/2015 SHEET 2 OF 3

D 11	Description	Degree of Weathering	Li	Rock Strength	Fracture	Discontinuities	L	· ·		n Situ Testing
(m)	of Strata	እ ት ጅ ጅ ጅ ጅ ይ	Graph	Very Low Medium Aredium Arry High Sx High	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	SHALE - medium to high and high strength, fresh, fragmented to fractured and slightly fractured, grey shale with some very low and very low to low strength bands along					10.0-10.15m: J90°, pl, sm, partially he 10.15-10.2m: Sz & J30°, sl, sm, cly 10.2 & 10.29m: J60°, pl, sm, cln	с	100	75	
- 11	10.44-10.69m: shear zone					10.44m: J45°, pl, sm, cly 10.44m: J45°, pl, sm, cly 10.92-11.0 & 11.07-11.12m: J80°, pl, ro, cly vn 11.26-11.34m: J65°, pl, sm, cln 11.85-12.1m: J90°, pl, sm, cln 12.1-12.15m: J60°, pl, sm, cln 12.25-12.5m: J (x3) 65°- 75°, pl, sm, cly	С	100	55	PL(A) = 1.5 PL(A) = 1.1 PL(A) = 1
-13 13.1	SILTSTONE - high strength, fresh, slightly fractured, light grey and grey siltstone				L ++	sm, cln 12.82-12.97m: J (x3) 45°-60°, pl, sm, cln or he 13.2-13.4m: J75°, pl, ro, cln				PL(A) = 1.8
-14 14.0	LAMINITE - high and very high strength, fresh, slightly fractured and unbroken, light grey to grey, laminite with approximately 40% fine sandstone laminations and beds					st, ro, cln 14.4-14.55m: J75°, un, ro, cln 14.8m: J, sv, pl, ro, cln 15.08m: J45° & 80°, st,	С	100	90	PL(A) = 1.8
- 16			· · · · · · · · · · · · · · · · · · ·		1 ++	15.3m: J45°, pl, sm, Cz, 20mm 15.5m: J30° & 75°, st, ro, cln				PL(A) = 2
			· · · · ·				6	100	86	PL(A) = 3.4
- 17			· · · · ·					100	00	PL(A) = 3.5 PL(A) = 2.7
17.5 - 18 - 18.3	LAMINITE/SANDSTONE - medium strength, fresh, fractured and slightly fractured, light grey and grey, fine sandstone/laminite. 50% siltstone/sandstone laminations and beds					17.62-18.0m: microfaults 18.09m: J35°, pl, ro, Cz, 20mm				
- 19 19.13	SANDSTONE - very low strength, highly weathered, fractured, light grey and brown, fine to medium grained sandstone					18.13m: J50°, pl, ro, cln & J90°, he 18.2m: Fault & Sz? 18.3-18.75m: fault zone/shear zone 18.35m: J45°, pl, ro, cly 19.0-19.1m: Sz	с	100	61	PL(A) = 0.1
	SANDSTONE - description next page					L19.1m: J55°, pl, ro, fe, cly 19.3m: B0°, fe, cly 19.55-19.8m: B5°, cly 19.84-19.87m: cly				PL(A) = 0.7
	 11 12 13 13.1 14 14.0 15 16 17 17.5 18 18.3 19 	Depth (m) of SHALE - medium to high and high strength, fresh, fragmented to fractured and slightly fractured, grey shale with some very low and very low to low strength bands along shear zone (continued) 11 10.44-10.69m: shear zone 12 13 13 13.1 SILTSTONE - high strength, fresh, slightly fractured, light grey and grey siltstone 14 14.0 LAMINITE - high and very high strength, fresh, slightly fractured and unbroken, light grey to grey, laminite with approximately 40% fine sandstone laminations and beds 15 16 16 17.5 18 SANDSTONE - very low strength, highly weathered, fractured, light grey and brown, fine to medium grained sandstone 19 19.13 19.13 SANDSTONE - very low strength, highly weathered, fractured, light grey and brown, fine to medium grained sandstone	SHALE - medium to high and high strength, fresh, fragmented to fractured and slightly fractured, grey shale with some very low and very low to low strength bands along shear zone (continued) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SHALE - medium to high and high strength, fresh, fragmented to fractured and slightly fractured, grey shale with some very low and very low to low strength bands along shear zone (continued) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Depth (m) of Image: Construct of the second se	Depth (m) Strata Strata <thstrata< th=""> Strata Strata</thstrata<>	Depth (m) Depth of Strata Strata Strata Specing (m) B. Bedding J-Joint S. Shear (F) SHALE - nedium bigh and high strength. ftesh. tragmented to fractured, and slight fractured, orey shale with some very low and very low to low strength basel (shear zone (continued)) Image: Strength (Strength) Image: Strength (Strength) Image: Strength (Strength) Image: Strength (Strength) Image: Strength) Image: Strengt	Depth (m) Couples Weathering & Strata Strate (m) (m) Space (m) B. Beading (m) B. Beading (m) <td>Depth (m) or Weathering & Stata Subscription (m) Subscrind (m) Subscription (m)<td>Depth (m) or State (m) (m) Space (m) (m)</td></td>	Depth (m) or Weathering & Stata Subscription (m) Subscrind (m) Subscription (m) <td>Depth (m) or State (m) (m) Space (m) (m)</td>	Depth (m) or State (m) (m) Space (m) (m)

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAMP	PLINO	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B BLK C	Bulk sample Block sample Core drilling	P U, W	Piston sample Tube sample (x mm dia.) Water sample) Point load axial test Is(50) (MPa)) Point load diametral test Is(50) (MPa) Pocket penetrometer (kPa)		Douglas Partners
DE	Disturbed sample Environmental sample	₽	Water seep Water level	S V	Standard penetration test Shear vane (kPa)	\boldsymbol{P}	Geotechnics Environment Groundwater

SURFACE LEVEL: 129.25 AHD BORE No: 504 EASTING: 315022 NORTHING: 6265778 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 **DATE:** 23/3/2015 SHEET 3 OF 3

		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ഇ ഇ		Rock Strength	Fracture	Discontinuities	S	amnlii	na &	In Situ Testing
님	Depth	of	Weathering	aphic og	Very Low Very Low Low Wedium Wedium Very High Vater	Spacing			-		
	(m)	Strata	HW HW SW FR SW	Gra Gra		(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Core	RQD %	&
109		SANDSTONE - medium then high strength, moderately weathered, slightly fractured then unbroken, brown, medium to coarse grained sandstone with some very low strength bands <i>(continued)</i>						с	100		Comments PL(A) = 1.5 PL(A) = 1.3
	21 21.0	Bore discontinued at 21.0m		·····							FL(A) = 1.3
		- target depth reached									
107	-22										
106	-23										
105	-24										
104	- 25										
103	- 26										
102	-27										
101	-28										
100	- 29										

RIG: Scout 2

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

DRILLER: LC

LOGGED: MP/SI

CASING: HW to 1.2m

TYPE OF BORING: Solid flight auger to 1.0m; Rotary drilling to 1.5m; NMLC-Coring to 21.0m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAM	MPLIN	3 & IN SITU TESTING	LEG	END	1		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BL	< Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)			Nolidiae Partnere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	¥	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
	· · · ·				· · ·		_	

SURFACE LEVEL: 128.25 AHD EASTING: 314950 **NORTHING: 6265798** DIP/AZIMUTH: 90°/--

BORE No: 523 PROJECT No: 84335.02 DATE: 19/6/2015 SHEET 1 OF 3

Rock Degree of Weathering Fracture Discontinuities Sampling & In Situ Testing Description Strength Graphic Spacing Depth High High Water Core Rec. % RQD % 뉟 8 Test Results of Very Low Low Medium Very High Ex High N Type B - Bedding J - Joint (m) (m) 8∣ & , <u>6</u> 6 S - Shear F - Fault Strata 102 E S W HW Comments FILLING - light brown to brown, А sandy clay filling with a trace of 128 gravel (roadbase), moist А 0.6 SILTY CLAY - stiff to very stiff, brown, silty clay with a trace of ironstone gravel, moist Note: Unless otherwise A stated, rock is fractured 3,7,16 s 127 along rough planar N = 23bedding dipping 0°- 10° 1.6 LAMINITE - extremely low strength, grey-brown laminite 1.9 LAMINITE - medium strength, highly to moderately weathered, highly fractured to fractured, grey-brown 1.9-2.3m: B (x6) 0°, fe . 2 126 2 3-2 33m⁻ Cs PL(A) = 1.1laminite with some clay bands С 100 0 2.45-2.75m: B (x7) 0°, clv. 1-5mm 2.9m: B0°, cly, 10mm & - 3 J, sv, un, ro, cly 3.0-3.4m: B (x5) 0°, fe 125 PL(A) = 0.43.4-3.42m: Cs 3.55-4.52m: B (X15) 0°-5°, fe, cly, 5-10mm 4 С 100 0 124 . . PL(A) = 0.5... . . 4.7 & 4.8m: Cs, 20mm - 5 5m: J80°, un, ro, fe 5.06-5.25m: fg 5.25m: CORE LOSS: 123 5.35 100mm -5.47m: J45°, un, ro, cly 5.6 SHALE - medium strength, slightly 5.6m: J35°, un, ro, fe 5.65-7.31m: B (x15) 0°, PL(A) = 0.6weathered, fractured, dark grey and brown shale 6 fe С 94 28 22 PL(A) = 0.47 -2-PL(A) = 0.6P 7.4m: J, sv, (80°), un, ro, fe 8 7.95-8.25m: J70°- 80°, 8.15 st, ro, fe SHALE - high then medium 120 strength, fresh, slightly fractured 8.3m: B0°, fg 10mm PL(A) = 1.4100 79 С then unbroken, grey shale 9 <u>6</u> PL(A) = 1.29.6m: B0°, fe С 100 100 DRILLER: SS LOGGED: SI CASING: HW to 1.0m RIG: Scout 1 TYPE OF BORING: Solid flight auger to 1.0m; Rotary to 1.9m; NMLC-Coring to 25.0m WATER OBSERVATIONS:

REMARKS:

CDF

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LECERNU PIID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample ₽ ₽

QIC Pty Ltd **Castle Tower Expansion Project** Castle Street, Castle Hill

CLIENT:

PROJECT:

LOCATION:

CLIENT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

PROJECT: Castle Tower Expansion Project

SURFACE LEVEL: 128.25 AHD BORE No: 523 EASTING: 314950 NORTHING: 6265798 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 19/6/2015 **SHEET** 2 OF 3

	Description	Degree of Weathering	2	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
균 Depth (m)	of	Weathering		Vate	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
_	Strata	N N N N N N N N N N N N N N N N N N N	ر.		0.05 0.10 0.50 1.00	S - Shear F - Fault	۲ ۲	Q Q	ΩŬ	Comments
81 11 11.35 12 91	SHALE - high then medium strength, fresh, slightly fractured then unbroken, grey shale (continued) INTERBEDDED SANDSTONE/SILTSTONE - high strength, fresh, slightly fractured, light grey and grey, fine grained sandstone interbedded with siltstone					10.95m: J55° & 30°, st, ro, cln 11.3m: J45°, pl, ro, cln	с	100	100	PL(A) = 0.9 PL(A) = 1.6
- 13						12.25m: J90° 13.12m: J50° & 80°, cu,				PL(A) = 2.6
ο- - - - - - - - - - - - - - - - - - -						13.12m: J50° & 80°, CU, ro, cin				PL(A) = 1.5
- - - - - - - - - - - - - - - - - - -						14.35m: J45°, un, ro, cln 14.85m: J40°, pl, ro, cln	С	100	100	PL(A) = 1.3
21 - 16 - 16.1	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light					16.1m: B0°, cly				PL(A) = 2.2 PL(A) = 1.5
- - - - - - - - - - - - - - - - - - -	grey, fine grained as and stone with some carbonaceous laminations					16.8-17.0m: J70° & 85°, st, ro, cin	С	100	100	PL(A) = 2.4
- 17.8 - 18 	SANDSTONE - high strength, fresh then moderately to slightly weathered, slightly fractured then unbroken, light grey and red-brown, medium grained sandstone					18.45m: J30°, cly co				PL(A) = 1.4
601 - 19 						19.15m: B20°, cly vn 19.7m: B5°, ir, fe stn	с	100	100	PL(A) = 2.3
RIG: Scou TYPE OF E	BORING: Solid flight auger to 1.0m BSERVATIONS:	ER: SS a; Rotary to 1.9	9m;		ED: SI 25.0m	Casing: HW	/ to 1	.0m		

Г	SAM	PLIN	G & IN SITU TESTING	LEGEND	
A E C L E	Auger sample Bulk sample LK Block sample Core drilling Disturbed sample Environmental sample	G P U×W ∆₩	Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level	PID Photo ionisation detector (ppm) PL(A) Point bad axial test Is(50) (MPa) PL(D) Point bad diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)	Douglas Partners Geotechnics Environment Groundwater

SURFACE LEVEL: 128.25 AHD BORE No: 523 EASTING: 314950 NORTHING: 6265798 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.02 DATE: 19/6/2015 SHEET 3 OF 3

		Description	Degree of Weathering Case Case Case Case Case Case Case Case	Rock Strength _{ຫຼ}	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
പ	Depth	of		Very Low Very Low Low Medium High Kery High Ex High Ex High	Spacing	B - Bedding J - Joint				
	(m)	Strata	P A R S S R R O B B C S S C R B O B C S S C R B O B C S S S C R B O B C S S S C R B O B C S S S S S S S S S S S S S S S S S S	Ex Low Very Low Medium Very High Ex High	0.100 0.100 1.000 0.100 0.100	S - Shear F - Fault	Type	Con Sec.	RQD %	& Comments
-		SANDSTONE - high strength, fresh								
108		then moderately to slightly weathered, slightly fractured then unbroken, light grey and red-brown, medium grained sandstone				20.3m: B0°, cly co 20.52m: B0°, fe stn				PL(A) = 1.3
	21	medium graineu sanusione					с	100	100	
107						21.25-21.4m: J70°, un, ro, fe				PL(A) = 1.4
106	22					22.15m: B0°, cly co				
-										PL(A) = 1.4
105	23					23.1m: J30°, un, ro, cln	С	100	100	
	24					23.5m: J30°, pl, ro, cln				PL(A) = 1.3
104	24									PL(A) = 1.4
	25 25.0									
103	20 20.0	Bore discontinued at 25.0m								
	26									
102										
101	27									
100	28									
66	29									
-										

RIG: Scout 1

DRILLER: SS

LOGGED: SI

CASING: HW to 1.0m

TYPE OF BORING: Solid flight auger to 1.0m; Rotary to 1.9m; NMLC-Coring to 25.0m WATER OBSERVATIONS:

REMARKS:

CLIENT:

PROJECT:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

SURFACE LEVEL: 128.4 AHD EASTING: 314893.2 NORTHING: 6265789 DIP/AZIMUTH: 90°/--

BORE No: 901 PROJECT No: 84335.14 **DATE:** 3/3/2022 SHEET 1 OF 2

Degree of Weathering Rock Sampling & In Situ Testing Fracture Discontinuities Description Strength Water Depth Spacing Core Rec. % RQD 8 , Light Test Results 님 of Very Low Low Medium Very High Ex High N B - Bedding J - Joint Type (m) (m) §| & ტ S - Shear F - Fault Strata 10 020 HW NW EN Comments TOPSOIL/Silty CLAY: medium D/E plasticity, dark brown-grey, with fine 0.2 to medium siltstone gravel and root 128 D/E fibres, w~PL Unless otherwise stated. Silty CLAY CH: high plasticity, dark rock is fractured along 0.8 brown mottled pale brown, with fine smooth or rough planar bedding dipping at 0°-5° with clay coating or iron to medium siltstone and ironstone gravel, w~PL, stiff, residual 25/100 D/E/S refusal strain Gravelly CLAY CL: low plasticity 1.3 127 pale brown, fine subangular to angular siltstone gravel, with silt, 1.43m: 2mm ¹.49m: J70°-90°, cu, ro, w<PL, very stiff, residual (extremely cly vn 1.5m: 2mm PL(A) = 1.1weathered rock) _ - 2 С 90 0 Below 1.0m: becoming hard 2.14m: J60°, pl, ro, cly SILTSTONE: pale grey, dark grey and orange-brown, approximately 15-20% fine grained sandstone vn 126 2.49m: J60°, pl, ro, cly laminations, very low to low strength co 3mm 2.7 PL(A) = 0.78with high strength bands, highly to 2.57m: CORE LOSS: moderately weathered, fractured, 130mm - 3 ~3.02m: J60°, pl, ro, cly Ashfield Shale vn -3.14m: J60°, pl, ro, cln 3.15m: B0°-5°, pl, ro, cly 25 С 100 10 3.46 SILTSTONE: dark grey and PL(A) = 0.12co 3mm 3.24m: J80°, st, ro, cln _ orange-brown, approximately 5% fine grained sandstone laminations, _ 3.54m: J30°, pl, sm, fe low to medium strength, slightly to - 4 stn highly weathered with extremely ^L3.66m: J60°, pl, sm, cly weathered bands, fractured, co 2mm fragmented in places, Ashfield Shale 124 '3.7m: J30°, pl, sm, cln '3.73m: J30°, pl, sm, cln '3.81m: J45°-80°, cu, _ PL(A) = 0.17_ С 93 0 sm, cln 3.91m: J45°, pl, sm, cln 4.52m: J45°, pl, sm, fe - 5 _ stn 123 4.68m: J60°, pl, ro, fe 5.5 stn 4.83m: J60°, pl, ro, cly co 2mm 4.94m: J30°, pl, sm, fe _ 90 6 С 0 stn 5.12m: J30°-80°, cu, 1 ک sm, fe stn PL(A) = 0.36122 5.4m: CORE LOSS: 6.5 \sim 100mm 5.52m: J90°, pl, sm, cln 5.6m: B0°-5°, pl, ro, cly co 10mm 5.72m: J60°, pl, sm, cln 5.88m: J30°, pl, sm, cln 6.4m: CORE LOSS: 7 ____ С 100 15 -2 100mm PL(A) = 0.12_ 6.67m: B0°-5°, pl, ro, cly _ co 200mm 7m: J90°, pl, ro, fe stn 7.23m: J45°, pl, ro, fe 8 _ stn ¹7.53m: J60°, pl, ro, fe 20 8.4 SILTSTONE: dark grey, pale grey stn 7.64m: J60°, pl, ro, fe and orange-brown, approximately 30-40% fine grained sandstone stn laminations, medium strength, PL(A) = 0.98 - 9 slightly to moderately weathered _ С 100 73 fractured, Ashfield Shale 9.22m: J30°, pl, ro, fe _ 5 <u>.</u> stn ℃9.42m: J30°, pl, ro, cln _ **DRILLER:** Ground Test LOGGED: SL CASING: HWT to 1.3m RIG: Geo 305 TYPE OF BORING: Solid Flight Auger to 1.3m, NMLC Coring to 13.35m

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND
 LECETNU

 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 PL(D) Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 Standard penetration test

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample G P U W Douglas Partners Piston sample Tube sample (x mm dia.) Core drilling Disturbed sample Environmental sample Water sample CDF Wate Þ Water seep Water level Geotechnics | Environment | Groundwater

LOCATION:

QIC Ltd

CLIENT:

PROJECT:

Hill

Proposed Leisure Centre Showground Road & Kentwell Avenue, Castle

SURFACE LEVEL: 128.4 AHD **EASTING:** 314893.2 **NORTHING:** 6265789 **DIP/AZIMUTH:** 90°/--

BORE No: 901 **PROJECT No:** 84335.14 DATE: 3/3/2022 SHEET 2 OF 2

		Description	Degree of Weathering	U	Rock Strongth	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
RL	Depth	of	vveathering	Graphic Log	Strength Medium High Kery High Kery High Nater 0.01	Spacing (m)	B - Bedding J - Joint			. <u> </u>	Test Results
	(m)	Strata	H M M M M M M M M M M M M M M M M M M M	5 J	Ex Low Very Lcow Mediur Very H Ex High 0.01	0.10	S - Shear F - Fault	Type	ပ္က ပ္လ	RQD %	& Comments
118	- 11	SILTSTONE: dark grey, pale grey and orange-brown, approximately 30-40% fine grained sandstone laminations, medium strength, slightly to moderately weathered, fractured, Ashfield Shale (continued) Between 10.10-10.25m: cross-bedded					10.33m: J60°, pl, fe vn, he 10.4m: J45°, pl, fe, vn, he 10.81m: J30°-60°, cu, ro, fe stn	С	100	73	PL(A) = 0.78
	- - - 12 - 12.32	Between 10.74-10.85m: cross-bedded						с	100	55	PL(A) = 0.53
	- 13	SANDSTONE: fine grained, pale brown-grey and orange-brown, 10-15% siltstone laminations, high to very high strength, slightly to moderately weathered, fractured with extremely weathered bands, probable Mittagong Formation					12.45m: J60°-90°, ir, ro, fe stn, partially he 12.61m: J60°, pl, fe stn, he 12.75m: J80°-90°, pl, ro, fe stn 13.12m: J80°-90°, pl, ro, c				PL(A) = 4.3
115	13.35	Bore discontinued at 13.35m - Limit of Investigation					fe stn				
	-14										
114	-										
	- 15										
113	-										
	- 16										
112	-										
111	- 17										
	- 18										
110	-										
109	- 19										

RIG: Geo 305

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

DRILLER: Ground Test

LOGGED: SL

CASING: HWT to 1.3m

TYPE OF BORING: Solid Flight Auger to 1.3m, NMLC Coring to 13.35m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** Location coordinates are in MGA94 Zone 56.

	SAM	MPLING	3 & IN SITU TESTING	LEG	END	1		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)			N Douolas Parliers
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		11	Operational L English and L Operation
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			🭊 Geotechnics Environment Groundwater
						•		

SURFACE LEVEL: 123.5 AHD EASTING: 314826.3 NORTHING: 6265798.6 DIP/AZIMUTH: 90°/-- BORE No: 902 PROJECT No: 84335.14 DATE: 7/3/2022 SHEET 1 OF 2

Γ		Description	Degree of	υ	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	In Situ Testing
R	Depth (m)	of	Weathering	Graphic Log		Spacing (m)	B - Bedding J - Joint	e	Core Rec. %	۵.,	Test Results
	()	Strata	H H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H W K H	Ū	Ex Low Very Lov Medium Very High Ex High	0.01	S - Shear F - Fault	Type	ပိ မို	RC %	& Comments
-	0.15	FILL/TOPSOIL/Gravelly CLAY:		\bigotimes				D/E			
123	- - -	medium, angular to subangular gravel, with silt and root fibres, w <pl< td=""><td></td><td>\bigotimes</td><td></td><td></td><td></td><td>D/E</td><td></td><td></td><td></td></pl<>		\bigotimes				D/E			
ŀ	-	FILL/Silty CLAY: medium plasticity, dark brown, with gravel, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td>D/E</td><td></td><td></td><td></td></pl<>						D/E			
Ē	-1 1.0	Silty CLAY CL: low plasticity, brown, with fine to medium, angular to						S			21,25/120 refusal
121	- 1.4	subangular ironstone and siltstone gravel, w <pl, residual<="" stiff,="" td=""><td></td><td>$\left\langle \right\rangle$</td><td></td><td></td><td></td><td>с</td><td>100</td><td>0</td><td></td></pl,>		$\left\langle \right\rangle$				с	100	0	
Ē	-	CLAY CH: high plasticity, pale grey mottled orange-brown, with low to							100	0	
ŀ	-2	low strength, orange-brown siltstone bands, w <pl, extremely<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
ŀ	-	weathered rock		\langle / \rangle				с	100	0	
121	-	CLAY CH: high plasticity, pale grey, with orange-brown and red-brown,							100	0	
Ē	-	low strength siltstone bands, w <pl, extremely="" rock<="" stiff,="" td="" very="" weathered=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
ł	-3 3.12			×			3m: CORE LOSS: 120mm				
-	-						1201111				
120	-			\langle / \rangle			Unless otherwise stated, rock is fractured along				
ŧ			╞┿┆┆┆┆				smooth or rough planar bedding dipping at 0°-5°,	с	93	0	
ŀ	-			\langle / \rangle			some with iron stain or clay coating to 5mm				
119	4.55						, , ,				
Ē		SILTSTONE: orange-brown, dark brown and grey, approximately		<u> </u>							
ŧ	-5	30-40% fine grained sandstone laminations, very low to low strength,		· ·			4.86-6.03m: (x5)				PL(A) = 0.17
ŀ	-	highly weathered with extremely weathered bands, fractured, Ashfield		·							
118	-	Shale	4,	·							
ŧ	-					╎╎╔╾┦╎					
ŀ	-6			· ·		[6.11m: J80°-90°, pl, ro,	с	100	18	PL(A) = 0.36
Ē.	-						fe stn		100	10	
117	-	Below 6.53m: dark brown to black					6.4m: B0°-5°, pl, ro, cly ∖ co 20mm				
ŀ	-	viron-cement present on fractures				; ;; [_ ;;	6.56m: B0°-5°, pl, ro, cly				PL(A) = 0.74
Ē	-7	grey, orange-brown and pale brown, approximately 5-10% siltstone					6.74m: B0°-5°, pl, ro, cly				
116	-	laminations, medium to high strength, highly to moderately					6.9m: J70°-80°, pl, ro, fe				
-	-	weathered with extremely weathered				┊┊┟	7.25m: B0°-5°, pl, ro, cly				
Ē	-8	bands, fractured, probable Mittagong Formation					7.32m: J45°, pl, ro, cln 7.5m: J45°, pl, he				PL(A) = 0.75
ŀ	-						^L 7.73-7.85m: J45°(x2), pl, ro, fe stn				
115	-						8.44m: B0°-5°, pl, ro, cly				
Ē	-						co 12mm 8.72m: J70°-80°, pl, ro,	С	100	23	PL(A) = 0.44
Ē	-9					 	∫ fe, he 8.87m: B0°-5°, pl, ro, cly				
ŧ	-					╎╘┱┛╎╎	∖co 30mm 9.04m: B0°-5°, pl, ro, cly				
114	-						∖co 35mm 9.3m: J80°-90°, ir, ro, fe,				
Ē	10.0	Bore discontinued at 10.0m					he 9.58m: B10°-15°, pl, ro,				
		- Limit of Investigation						IT 4 -			ta 2 0m
R	G: Geo	305 DRILL	.ER: Ground	lest	LOG	GED: SL	CASING: HW	I to	1.4m,	, HQ	to 3.0m

TYPE OF BORING:Solid Flight Auger to 1.4m, Wash Bore to 3.0m, NMLC Coring to 10.00m**WATER OBSERVATIONS:**No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 123.5 AHD EASTING: 314826.3 NORTHING: 6265798.6 DIP/AZIMUTH: 90°/-- BORE No: 902 PROJECT No: 84335.14 DATE: 7/3/2022 SHEET 2 OF 2

Γ		Description	De	egree	e of	Graphic Log		R	ock eng	(th		F	ractu	ire	Discontinuities Sampling & In Situ Testing
R	Depth (m)	of		aure	ang	iraphi Log			E E	밀린	Water		Spacii (m)		B - Bedding J - Joint S - Shear F - Fault B - Shear F - Fault B - Bedding J - Joint B - Shear F - Fault B - Shear F - Fault Comments
		Strata	N N N	₩ NS	2 E	0	Ex Lo	اۆ زۇ	Medi	I§I		5	0.05	1.00	S - Shear F - Fault Comments Comments Comments PL(A) = 1.1 Comments Com
ŀ	- -		ļ				ļį			ii					Cly co 5mm PL(A) = 1.1 '9.59m: J70°-80°, pl, he '9.68m: J70°-80°, pl, ro, cly co 10mm '0.00mm
113							ļ			ij					ciy co 10mm 9.92m: J60°-70°, pl, ro,
ł	-												Ì Ì		
ł	- 11														
112	-														
-	-														
ŀ	- 12											 			
ł	-											 			
111	-											 			
ł	- 13												 		
ŧ													 		
110	-											 			
ŀ	-														
ł	- 14														
109	-														
-	-														
ŀ	- 15								 			 			
ł	-														
108	-						li					 		i i I I	
ł	- 16		İ		İİ		ļ			ii		i I	ii	ii	
ł			ļ				li			ii					
107	-		ļ		İİ		ļį			İİ					
ł	-		ļ		İİ		ļį			İİ					
ł	- 17 [ļ								
106	-						ļ		İ			 	11		
Ę	-												11		
ŀ	- 18														
ŀ	-		Ì							Ϊİ		 			
105	-											İ.	11		
ŧ	- 19						l i			1 I		i	11	11	
ŀ												İ.			
104	-								İ						
E	-														
Ĺ	L					1						[

RIG: Geo 305

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

DRILLER: Ground Test

LOGGED: SL

CASING: HWT to 1.4m, HQ to 3.0m

TYPE OF BORING:Solid Flight Auger to 1.4m, Wash Bore to 3.0m, NMLC Coring to 10.00mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:Location coordinates are in MGA94 Zone 56.

Γ		SAMPL	INC	3 & IN SITU TESTING			1					
	A Auge	er sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	_	_
	B Bulki	sample	Р	Piston sample) Point load axial test Is(50) (MPa)						<i>tners</i>
	BLK Block	k sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	1	1.				Thers
	C Core	e drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
	D Distu	urbed sample	⊳	Water seep	S	Standard penetration test		1.				0 1 1
	E Envir	ronmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	Envi	ronment I	Groundwater
-		· · · ·				. ,						

CLIENT:

PROJECT:

QIC Ltd

Hill

Proposed Leisure Centre

LOCATION: Showground Road & Kentwell Avenue, Castle

SURFACE LEVEL: 122.4 AHD BORE No: 903 EASTING: 314835.3 NORTHING: 6265814.6 DIP/AZIMUTH: 90°/--

PROJECT No: 84335.14 **DATE:** 4/3/2022 SHEET 1 OF 1

D4	Description	Degree of Weathering ie	Rock Strength ត្រ	Fracture Spacing	Discontinuities				In Situ Testing
Depth (m)	of	Weathering		(m) Ŭ	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Resul &
	Strata	M H M S S S E C	Ex Low Nery Very Very Very	0.05 0.10 1.00	S - Shear F - Fault		ų š	Ϋ́,	Comment
0.15	FILL/TOPSOIL/Gravelly CLAY: medium plasticity, dark brown, medium, angular to subangular gravel, with silt and root fibres, w <pl FILL/CLAY: medium plasticity, dark brown, with fine angular ironstone and siltstone gravel and root fibres,</pl 					D/E D/E			
- 1.65	CLAY CI: medium plasticity, pale grey mottled orange-brown, with silt, w <pl, residual<br="" stiff,="">Below 1.1m: becoming pale grey, very stiff Silty CLAY CL: low plasticity, pale grey, with fine angular siltstone and</pl,>					S D/E			4,6,6 N = 12
-3	shale gravel, w <pl, stiff="" to<br="" very="">hard, extremely weathered rock</pl,>					D S			14,16,18 N = 34
- 3.8-	SILTSTONE: dark grey and orange-brown, laminated, very low				Unless otherwise stated, rock is fractured along rough planar bedding dipping at 0°-5° with iron stain				25/60
5	Strength, highly weathered, fractured, Ashfield Shale SILTSTONE: dark grey, orange-brown and pale grey, approximately 5-10% fine grained sandstone laminations, low to moderately weathered with extremely weathered bands, fractured, Ashfield Shale				4.15-4.29m: J90°(x3), ir, ro, fe stn 4.51-4.63m: B0°-5°(x2), pl, ro, cly co 10mm 4.73-4.92m: J90°(x4), pl, ro, fe stn 5.07-7.20m: B0°-5°(x20), pl, ro, cly co 10mm	C	100	0	PL(A) = 0.3
- 6 6.38 - 7	SILTSTONE: dark grey, orange-brown and pale grey, approximately 40-50% fine grained sandstone laminations, low to high strength, moderately weathered to fresh, slightly fractured, Ashfield Shale								PL(A) = 0.9
-8 8.16-	Between 7.68-7.88m: fine grained sandstone band SANDSTONE: fine to medium grained, pale grey, pale brown and orange-brown, <5% siltstone	======= - - - - - - - - - -			7.67m: B0°-5°, pl, ro, cly co 10mm -7.71m: J70°-80°, pl, ro, fe stn -7.87m: B0°-5°, pl, ro, cly co 2mm 9.17m: B0° 5°, pl, ro, cly	С	100	35	PL(A) = 0.2 PL(A) = 1.
-9 9.0	laminations, high strength, slightly weathered to fresh, slightly fractured, probable Mittagong Formation Bore discontinued at 9.0m - Target Depth Reached				^L 8.17m: B0°-5°, pl, ro, cly co 2mm				PL(A) = 1.
G: Geo	305 DRIL BORING: Solid Flight Auger to 4.1	LER: Ground Tes		GED: SL	Casing: HV	/T to	 4.1m		

Cement 0.0m to 0.5m, 0.5m stick up with monument)

	SAM	PLIN	3 & IN SITU TESTING	LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		_		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				Partne	o Ko
BL	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)					
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			140		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1			() 0	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	s I Envii	ronment Groun	dwater

Appendix D2 – Shallow Augered Boreholes

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 208 PROJECT No: 43863A DATE: 19 Apr 06 SHEET 1 OF 1

		Description	0		Sam	pijna 8	In Situ Testing		Well	
RL	Depth (m)	Description of	Graphic Log					Water	Construction	
ſ	(m)	Strata	23 03	Type	Depth	Sample	Results & Comments	W	Details	
Н		ASPHALTIC CONCRETE		,		ů.				
	- 0.1	ROADBASE - dark brown sandy gravel roadbase	- byi		0.1					
	-		h Q° <	A			PID<1ppm			
	- 0.3	SILTY CLAY - red brown silty clay (possibly filling)	77	<u> </u>	0.3					
			1/1/	A	0.5		PID<1ppm			
	- 0.5	SILTY CLAY - hard, grey mottled yellow silty clay	VV	A	0.5		PID<1ppm			
	- 0.7		VV	1	0.7					
1	-	Bore discontinued at 0.7m in silty clay - refusal		1						
									-	
	-1								-1	
	-									
ŀ										
	-								-	
	-								ļ	
	-									
	ŀ									
	-2								-2	
ŀ	ŀ									
	ſ									
	[
1	ļ									
									-	
	ŀ								-	
	-									
	-3								-3	
	-								-	
	Ī									
	-									
Į	ŀ									
	ŀ									
	ŀ									
	- 4							ł	- 4	
	ł.									
	[ļ					
	[
	ļ			1						
	ŀ			1						
	ŀ									
L				1		1	L		I	

RIG: Bobcat mounted auger DRILLER: B Ellis TYPE OF BORING: 125mm diameter solid flight auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

PROJECT:

Queensland Investment Corporation

LOCATION: Cnr Old Northern Rd & Showground Rd,

Castle Hill

Preliminary Contamination Assessment

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 pp
 Pocket penetrometer (KPa)

 D Disturbed sample
 PID
 Photo ionisation detector

 B Buk sample
 S Standard penetration test
 Initials: CFK

 U, Tube sample (x mm dia.)
 PL
 Point load strength Is(50) MPa

 W Water sample
 V Shear Vane (KPa)
 Date: 29.05.06

LOGGED: Karpiel

CASING: Uncased

Queensland Investment Corporation

Preliminary Contamination Assessment

Cnr Old Northern Rd & Showground Rd,

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/- BORE No: 209 PROJECT No: 43863A DATE: 19 Apr 06 SHEET 1 OF 1

			Castle Hill		DIF	P/AZ	MUT	H: 90°/		SHEET 1 OF	1
ĺ			Description	hic		Sam		In Situ Testing		Well	
귄	Depi (m)	10)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	l
	 - -		FILLING - brown slightly clayey silt (topsoil), with traces of rock fragments and vegetation	\bigotimes	А	0;0		PID<1ppm			
	-				A	0.3 0.5		PID<1ppm			
		0.7	ON TOTONE was low strength light grou method			0.0				-	
	-		SILTSTONE - very low strength, light grey mottled orange siltstone with some sandstone layers	· · · · · · · ·	A	0.8 1.0		PID<1ppm		- - -1	
	-1 -					1.0				-	
				· ·	A	1.3 - 1;5 -		PID<1ppm			
		1.5	Bore discontinued at 1.5m in siltstone - target depth reached			-1,5					
	-									-2	
	-2										
	-									-3	
	-3										
	-										
	F										
										• •	
	- 4									-4	
	-										

RIG: Bobcat mounted auger DRILLER: B Ellis TYPE OF BORING: 125mm diameter solid flight auger WATER OBSERVATIONS: No free groundwater observed REMARKS: LOGGED: Karpiel

el

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 pp

 D Disturbed sample
 PID

 Photo ionisation detector

 Buik sample
 Standard penetration test

 U, Tube sample (x mm dia.)
 PL

 V Water sample
 V Shear Vane (kPa)

 C Core drilling
 > Water seep

CHECKED Initials: CI=K Date: 2.9.05,06

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 210 PROJECT No: 43863A DATE: 19 Apr 06 SHEET 1 OF 1

						H: 90/		SHEET TOF T
_ Depth	Depth					In Situ Testing	_ b	Well
교 Depth ㎡ (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	FILLING - brown silty clay filling, with rock fragment and fragments of brick and terracotta		А	0:0		PID<1ppm		
			А	0.3		PID<1ppm		
		\bigotimes		0.5				
-1								-1
				1.3				
- 1.5	Bore discontinued at 1.5m		A	1.5		PID<1ppm		
-	- refusal in filling							
-2								-2
			- - - -					
-								
-3								-3
-								
4								- 4
	cat mounted auger DRILLER: B Ellis		LO	GGE	D: Ka	rpiel	CAS	SING: Uncased

RIG: Bobcat mounted auger DRILLER: B Ellis TYPE OF BORING: 125mm diameter solid flight auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

PROJECT:

Queensland Investment Corporation

LOCATION: Cnr Old Northern Rd & Showground Rd,

Castle Hill

Preliminary Contamination Assessment

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 pp
 Pocket penetrometer (KPa)

 D
 Disturbed sample
 PID
 Phote ionisation detector

 B
 Bulk sample
 S
 Standard penetration test

 U,
 Tube sample (x mm dia.)
 PL
 Point load strength Is(50) MPa

 W
 Water sample
 V
 Shear Vane (KPa)

 C
 Core drilling
 V
 Water seep ¥

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 211 PROJECT No: 43863A DATE: 19 Apr 06 SHEET 1 OF 1

	Castle Hill					H: 90/		SHEELIOFT
Death	Description		Sampling & In Situ Testing					Well
⊐ Depth ∝ (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	FILLING - brown slightly clayey, sandy silt filling with traces of rock fragments		A	0?0		PID<1ppm		
			A	0.3 0.5		PiD<1ppm		
- 0.7	SILTY CLAY - orange brown silty clay (possibly filling)			0.8				
- 1 - 1			A	1.0		PID<1ppm		-1
- - -			A	1.3		PID<1ppm		
- 1.5	Bore discontinued at 1.5m in silty clay - target depth reached	<u> ////</u>		-1.5		• •		
-2								-2
-3								-3
-4								-4
	cat mounted auger DRU LER : B Ellis			GGEI				SING: Uncased

RIG: Bobcat mounted auger DRILLER: B Ellis TYPE OF BORING: 125mm diameter solid flight auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

PROJECT:

Queensland Investment Corporation

LOCATION: Cnr Old Northern Rd & Showground Rd,

Castle Hill

Preliminary Contamination Assessment

LOGGED: Karpiel

CASING: Uncased

Queensland Investment Corporation

Preliminary Contamination Assessment

Cnr Old Northern Rd & Showground Rd,

CLIENT:

PROJECT:

LOCATION:

Castle Hill

SURFACE LEVEL: --EASTING: **NORTHING:** DIP/AZIMUTH: 90°/-- **BORE No: 212** PROJECT No: 43863A DATE: 19 Apr 06 SHEET 1 OF 1

		Description	0		Sam	iplina 8	k In Situ Testing		Well	· ·
RL	Depth	Description of	Graphic Log	a			•, •••••	Water	Construction	
	(m)	Strata	5	Type	Depth	Sample	Results & Comments	3	Details	
		FILLING - brown sandy silt filling with rock fragments	\rightarrow		0.1					
				A	0.1		PID=1ppm		-	
	-				0.3				-	
	- 0.4	Bore discontinued at 0.4m								
		- refusal on concrete								
	-								-	
	·									
	- 1								-1	
									-	
	-									
	ļ								ļ	
	-			1						
	-									
	-2								-2	
	ļ									
ĺ									·	
	-									
	ţ									
	-3								-3	
	-									
	[
	-								-	
	ł					İ				
	ľ									
	-									
1	-	· · · ·							-	
	-4								-4	
	[
									-	
	ŀ									
									[
	ŀ					Í				
	ŀ									
	ţ									
R	u G · Boh	ocat mounted auger DRILLER: B Ellis		L	OGGE	D: K	arpiel	CA	SING: Uncased	

RIG: Bobcat mounted auger **DRILLER: B Ellis** TYPE OF BORING: 125mm diameter solid flight auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

SAMPLING & IN SITU TESTING LEGEND pp Pocket penetrometer (kPa) PiD Photo ionisation detector S Standard penetration test mm dia.) PL Point load strength Is(50) MPa V Shear Vane (kPa) > Water seep ¥ Water level CHECKED Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core dilling ADBU.WC Initials: CRK Date: 29.05.06 Core drilling

CASING: Uncased

CLIENT:

PROJECT:

LOCATION:

Castle Hill

Queensland Investment Corporation

Preliminary Contamination Assessment

Cnr Old Northern Rd & Showground Rd,

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 213 PROJECT No: 43863A DATE: 19 Apr 06 SHEET 1 OF 1

Douglas Partners Geotechnics · Environment · Groundwater

Γ	Τ	Description	Description <u>o</u> Sampling & In Situ Testing							
	Dept	th j	Graphic Log	a				Water	Well Construction	
	(m)	Strata	л С	Type	Depth	Sample	Results & Comments	Ň	Details	
┢		FILLING - brown clayey silt (topsoil) with some	$\times\!\!\!\times\!\!\!\times$		0:0			+		
	[vegetation	\bigotimes	A			PID<1ppm			
	ŀ		\bigotimes		0.3					
	ł		\bigotimes	A			PID<1ppm		- i	
	Ė.	0.6	\bigotimes		0.5	1			-	
	['	SILTY CLAY - stiff, red brown silty clay with some ironstone bands	1/1/							
					0.8				-	
	ŀ		1/1	A*			P!D<1ppm		-	
			1/1/		1.0				-1	
	ļ									
			1/1/						-	
	ŀ								-	
	†		/1/1/						-	
	[
	ŀ		///		1.8					
	ŀ			A			PID<1ppm		-	
	-2 :	2.0 Bore discontinued at 2.0m in silty clay	(XX)		2.0				2	
	t	- target depth reached						1		
	[
	-								-	
	ŀ								-	
	ŀ								-	
	[
	ŀ								[
	-3								-3	
	ŀ								}	
	ł								-	
	[
	ŀ									
	}									
	ł								-	
	[
	- 4								-4	
	-									
	•									
	[
	1								-	
	-								-	
	Ē								•	
P	RIG: Bobcat mounted auger DRILLER: B Ellis LOGGED: Karpiel CASING: Uncased									
	RIG: Bobcat mounted auger DRILLER: B Ellis LOGGED: Karpiel CASING: Uncased TYPE OF BORING: 110mm diameter solid flight auger									
	WATER OBSERVATIONS: No free groundwater observed									
R	REMARKS: *Denotes field replicate sample BD3190406 taken									
Γ.		SAMPLING & IN SITU TESTING LEGEND		CHE	CKED					
) Distu 3 Bulk	er sample pp Pocket penetrometer (kPa) urbed sample PID Photo ionisation detector sample S Standard penetration test			CFK					
	I, Tube V Wate	e sample (x mm dia.) PL Point load strength Is(50) MPa er sample V Shear Vane (kPa)						ug	Ias Partners s · Environment · Groundwater	
Ŀ	Core	e drilling D Water seep 😤 Water level		ate: L	1.05.0	8	🖬 📶 Geotec	hnic	s • Environment • Groundwater	

SURFACE LEVEL: --EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 214 PROJECT No: 43863A DATE: 19 Apr 06 SHEET 1 OF 1

Castle Thin		-			n: 90/		SHEET TOP	'
Depth Official	hic		,		& In Situ Testing	h	Well	
rd Depth of (m) Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Constructio Details	n
0.05 ROADBASE - blue grey gravel roadbase SILTY CLAY - brown silty clay with traces of gravel			0.05					
		A	0.3		PID<1ppm			
0.6 SHALY CLAY - hard, grey mottled orange shaly clay	Υ <u>γ</u>							
			0.8					
	-/-/-	A	- 1.0 -		PID<1ppm		-1	
Bore discontinued at 1.0m - in shaly clay								
-2							2	
		:						
			-			-	3	
-								
-4							,	
							• 4	
RIG: Bobcat mounted auger DRILLER: B Ellis		LO	GGED	D: Ka	rpiel	CASI	NG: Uncased	

RIG: Bobcat mounted auger DRILLER: B Ellis TYPE OF BORING: 110mm diameter solid flight auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

PROJECT:

LOCATION:

Castle Hill

Queensland Investment Corporation

Preliminary Contamination Assessment

Cnr Old Northern Rd & Showground Rd,

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 pp
 Pocket penetrometer (kPa)
 CHECKED

 D
 Disturbed sample
 PID
 Photo ionisation delector
 Initials: CFK

 U,
 Tube sample (x mm dia.)
 PL
 Point load strength 18(50) MPa
 Initials: CFK

 W water sample
 V
 Shear Vane (kPa)
 Date: 29,05.06

SURFACE LEVEL: 131.5 AHD **EASTING:** 314998 **NORTHING:** 6265718 **DIP/AZIMUTH:** 90°/--

BORE No: P1 PROJECT No: 84335.00 DATE: 22/6/2014 SHEET 1 OF 1

Γ		Description	ic		Sampling & In Situ Testing			Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	0.05		j. °O'			š			
131	-	ROADBASE - cement stabilised road base: 550mm thick	· 0 · . D · 0						-
Ę	0.6	SHALE - low strength, moderately weathered, brown shale	· · · ·	в	0.6				
	- -1 - 1.1				0.9				-1
	-	Bore discontinued at 1.1m							-
130	-								
Ē	-2								2
F.	-								-
129	-								
Ē	-3								3
-	-								-
128	-								-
Ē	-4								4
-	-								-
127	-								
	-5								-5
	-								-
126	-								
Ē	-6								6
	-								-
125	-								-
Ē	-7								7
-	-								-
12	-								-
-	- 8								-8
122 124 12	- - -								
12	-								
	-9								-9
- -~	-								
121	-								
E	-								

RIG: Excavator

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: KT TYPE OF BORING: 300mm diameter auger

LOGGED: PGH

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W Douglas Partners ₽ Geotechnics | Environment | Groundwater
SURFACE LEVEL: 127.0 AHD **EASTING:** 315041 **NORTHING:** 6265782 DIP/AZIMUTH: 90°/--

BORE No: P2 PROJECT No: 84335.00 **DATE:** 22/6/2014 SHEET 1 OF 1

								& In Situ Testing			
RL	De (n	pth	Description of	Graphic Log	<i>a</i> :				Water	Well Construction	-
Ľ.	(n	n)	or Strata	Gra	Type	Depth	Sample	Results & Comments	Ň	Details	1
ŧ		0.05	ASPHALT - 50mm thick		-		ő			Details	
EE			ROADBASE - cement stabilised roadbase 550mm thick	ġ. 'O' ↔							
 				$\Delta \mathcal{O}$						-	
ĒĒ		0.6	SHALE - low strength, moderately weathered, brown shale			0.8					
126	· 1				в					- 1	
 		1.2	Deve discontinued at 4 Oct			1.1				-	
ĒĒ			Bore discontinued at 1.2m								
 										-	
125	.2									-2	
	-									-	
ĒĒ											
<u></u>											
124	3									-3	
l ÷	5										
ŧŧ											
<u>}</u>										-	
123										- 4	
Ē	4									-	
ļ										-	
										-	
	_									-	
[3]	5									-5	
<u>}</u>										-	
ĒĒ											
										-	
12	6									-6	
ţţ											
ĒĒ										[
Ę	_										
120	7									-7	
ĘĘ										-	
 											
ĒĒ											
19	8									-8	
ĒĒ											
<u>}</u>											
ĒĒ										E	
19	9									-9	
ĒĒ										[
ļļ											
ĘF										Ę	
Ľ											

RIG: Excavator

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: KT TYPE OF BORING: 300mm diameter auger

LOGGED: PGH

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

	SAM	IPLIN	G & IN SITU TESTING	LEG	END			
A	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
E	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		🗖 Douglas Partners	
E	BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1.1	Nonaise Partnere	
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dugias rai licis	,
	Disturbed sample	⊳	Water seep	S	Standard penetration test	/		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater	r
						 _		

 SURFACE LEVEL:
 121.4 AHD

 EASTING:
 315018

 NORTHING:
 6265908

 DIP/AZIMUTH:
 90°/-

BORE No: P3 PROJECT No: 84335.00 DATE: 25/6 & 1/7/2014 SHEET 1 OF 1

										1
			Description	<u>ic</u>		Sam		& In Situ Testing	L	Well
님	De	epth n)	of	Graphic Log	ē	ţ	Sample	Populto 8	Water	Construction
	(II	"	Strata	5	Type	Depth	am	Results & Comments	<	Details
\vdash			ASPHALT - 180mm thick		-		S			
FF		0.18		þ. °O'						F
12			ROADBASE - cement stabilised roadbase, 1320mm thick	[¢' . '	D	0.4				F
FF				$\kappa \cdot \rho$						F I
FF				0.0						F
F	-1			1.00.0	В	0.9 1.0				-1
FF				p.P.		-				F I
-8				· · · ⊙						F I
		1.5	GRAVEL - bluemetal gravel with sand (roadbase)	100						-
			č	\circ						F I
1	-2	2.0		00						2
t t			Bore discontinued at 2.0m							
<u>_</u> €										t l
										t l
										t l
	-3									-3
	Č									
L∞										t l
÷										E I
FF										F
FF										F, I
FF	-4									-4
F, F										F I
==										F I
FF										F I
Ē										F I
11	-5									-5
- - -										-
Ę,										ļ.
										ţ I
 										ļ l
	-6									-6
										t l
115										
										t l
t t										t l
t t	-7									7
										t l
114										ţ l
ł ł										
ŀ										Ł I
ŧ F	-8									-8
EF										Ł I
113										Ł I
EF										Ł I
FF										F
FF	-9									-9
FF										F I
17										F I
										F I
 										ţ l
Ľ										t l

RIG: Excavator

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

DRILLER: KT/BM

LOGGED: PGH/JS

CASING: Uncased

TYPE OF BORING: 300mm diameter auger to 1.1m; 250mm Diatube to 1.5m; 150mm auger to 2.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Auger refusal at 1.1m on cement stabilised roadbase

	SAM	PLIN	3 & IN SITU TESTING	LEG	END	1					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	1					
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						rtners
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)				126	Del	rtnere
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			Budd		Γα	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		/				
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	l Enviro	onment	Groundwater
•								000000000000000000000000000000000000000			. ereananater

SURFACE LEVEL. EASTING: 314949 NORTHING: 6265961 SURFACE LEVEL: 115.6 AHD

BORE No: P4 PROJECT No: 84335.00 **DATE:** 22/6/2014 SHEET 1 OF 1

		Description	lic		Sam		& In Situ Testing	-	Dura			
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Uyna (5	mic Penetro blows per 1 10	50mm)	
	0.06	ASPHALT - 60mm thick	<i>р. °О</i> '			0)			-			_
	0.2	ROADBASE - blue metal gravel and sand, dry	\langle / \rangle	В	0.3							
115	0.6	CLAY - very stiff, orange clay with ironstone gravel, dry	$\langle / /$	D	0.6					:		Ĩ
		CLAY - hard, grey clay with ironstone gravel	\langle / \rangle									
	-1 1.0 . 1.2	SHALE - medium strength, slightly weathered, grey shale							-1 : [:			
	· · · ·	Bore discontinued at 1.25m - auger refusal							-			
11												
	-2								-2			
È									Ē			
113												
	-3								-3			
									-			
112												
	-4								4			
Ē												
	- 5								-5			
-												
110												
	-6								-6			
109												
Ē										•		
	-7								7			
108												
Ē												
	- 8								-8			
Ē												
107									:			
									Ē			
Ę	-9								-9			
									÷			
19									ŧ :			
									÷			
	G: Exca	vator DRILLER: KT			GED		CASING		ncased			

TYPE OF BORING: 300mm diameter auger WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

	SA	AMPLING	5 & IN SITU TESTING	LEGE	IND			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
в	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	1		Dou
С	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)		A 1	PUG
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	'		
E	Environmental sample	e ¥	Water level	V	Shear vane (kPa)			Geotechnic
 						 	_	

CLIENT: PROJECT:

Castle Towers Expansion Project LOCATION: Castle Street, Castle Hill

QIC Limited

SURFACE LEVEL: 116.3 AHD **EASTING:** 314869 **NORTHING:** 6265916 **DIP/AZIMUTH:** 90°/-- BORE No: P5 PROJECT No: 84335.00 DATE: 22/6/2014 SHEET 1 OF 1

		Description	Jic		Sam		& In Situ Testing	2	Dynamic I	Donotror	notor T	·oot
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blow	s per 15	0mm)	esi
		Strata	0	É.	ă	Sai	Comments		5	10 1	5 2	20
116	- 0.1 - 0.3		ġ. ℃ 		0.3							
Ē	-	\some clay, dry/ CLAY - stiff to very stiff, grey clay with some ironstone		В	0.6							
E	0.75 0.9	_\gravel/										
115	- 1.1	SHALE - low strength, moderately weathered shale	<u></u>									
Ē	-	weathered shale Bore discontinued at 1.1m										
ŀ	-	- auger refusal										
-	-2								-2			
114	-											
Ē	-											
E	-3								-3			
113	-											
ŀ	-											
ŀ	-4								4			
112	-											
Ē	-											
Ē	-5								5			
Ę	-											
ŀ	-											
ŀ	-6								-6			
110	-											
Ē	-											
Ē	-7								7			
109	-											
Ę	-											
ŀ	-											
- 	-8								-8			
108	-											
Ē	[[
E	-9								-9			
107	-											
ŀ	-											
Ŀ	ŀ								t :	: :		:
DI	G: Exca	vator DRILLER: KT		1.00		: PGH	CASING	.	nanad			

TYPE OF BORING: 300mm diameter auger WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PILD
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PILD
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 D
 Disturbed sample
 W
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)
 Ge

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: **QIC** Limited

Castle Towers Expansion Project

LOCATION: Castle Street, Castle Hill

SURFACE LEVEL: 121.6 AHD EASTING: 314810 **NORTHING:** 6265824 **DIP/AZIMUTH:** 90°/--

BORE No: P6 PROJECT No: 84335.00 DATE: SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	5	Dumomio Denotromotor Toot
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	0.06	Strata		É.	ă	Sai	Comments		5 10 15 20
		ASPHALT - 60mm thickROADBASE - angular bluemetal gravel with some sand,							L
121	0.4 0.6	\dry	\bigotimes						
		FILLING - crushed sandstone gravel and cobbles with some sand, dry		В	0.7 0.9				E
	·1	CLAY - very stiff, grey clay with some ironstone gravel			0.0				
	1.2 1.3	$\$ SHALE - low to medium strength, moderately weathered /							
120		Bore discontinued at 1.3m							
	-2	- auger refusal							-2
119									
- -									
	3								-3
118									
	.1								
	7								
	-5								-5
116									
	·6								-6
115									
	7								-7
114									
	8								-8
113									
	9								-9
112									
	: Exca	vator DRILLER: KT		1.00	GED			.	

TYPE OF BORING: 300mm diameter auger

CLIENT:

PROJECT:

QIC Limited

LOCATION: Castle Street, Castle Hill

Castle Towers Expansion Project

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample LING & IN SITUTESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample P Water seep Water level

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

Douglas Partners

Geotechnics | Environment | Groundwater

SURFACE LEVEL: --EASTING: -33.73264 NORTHING: 151.00214 DIP/AZIMUTH: 90°/-- BORE No: TP1 PROJECT No: 84335.02 DATE: 27/4/2015 SHEET 1 OF 1

	D-11	Description	Degree of Weathering biggst 2 m Degree of Deg	Rock Low Very Low High KEX High KEX High EX High EX High EX High	Fracture	Discontinuities	S			In Situ Testing
Ż	Depth (m)	of		Nate Nate	Spacing (m)	B - Bedding J - Joint	Type	ore %	RQD %	Test Results &
		Strata	G Frss G	Ex L Very Medi Ex H	0.01 0.10 0.50 1.00	S - Shear F - Fault	L È	ŭ ğ	Щ.	Comments
-		FILLING - apparently variably compacted, dark brown, sandy clay filling with some fine, medium and coarse gravel and some rootlets, damp								
-							A/E	_		
-								-		
-										
-							A/E	_		
-								_		
-										
-	-1									
-	1.1 -	Bore discontinued at 1.1m - services located								
-										
-										
-										
-										
-										
-										
-										
								1		

WATER OBSERVATIONS: No free groundwater observed REMARKS:

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

CLIENT:

PROJECT:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PIL
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 ¥
 Water level
 V

SURFACE LEVEL: --EASTING: -33.73284 NORTHING: 151.00249 DIP/AZIMUTH: 90°/-- BORE No: TP2 PROJECT No: 84335.02 DATE: 27/4/2015 SHEET 1 OF 1

			Degree of		Rock					~	
	Depth	Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ፼ ፼	J Lic	Rock Strength	Fracture Spacing	Discontinuities				n Situ Testing
RL	(m)	of		Log Log	Strendth Very Low Medium High Ex High Ex High Ex High O.01	(m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
		Strata	H M M M M M M M M M M M M M M M M M M M	<u>ن</u>	Ex Low Very Very Very Very 0.01	0.05 0.10 1.00	S - Shear F - Fault	T)	Ωğ	ΨŰ,	Comments
	- 0.14 -	CONCRETE FOOTPATH - no steel reinforcement observed									
	-	FILLING - apparently variably compacted, brown and grey, fine to medium gravely sand filling with		\bigotimes							
	-	some clay and rootlets		\bigotimes				A/E*			
	-										
	- 0.5 -	Bore discontinued at 0.5m - services located		~~							
	-										
	-										
	-										
	-1										
	-										
	-										
	-										
	_										
	-										
	-										
	-										
	-										

RIG: Vacuum truck **TYPE OF BORING:**

DRILLER: Cardno

LOGGED: MB

CASING: Uncased

TYPE OF BORING: Potholing WATER OBSERVATIONS: No free groundwater observed

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

CLIENT:

PROJECT:

REMARKS: *Triplicate samples RS1A, RS1B taken at 0.2m to 0.3m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Phoi

 B
 Bulk sample
 P
 Piston sample
 PL(A) Poin

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Poin

 C
 Core drilling
 W
 Water sample
 P
 Point

 D
 Disturbed sample
 >
 Water seep
 S
 Star

 E
 Environmental sample
 ¥
 Water level
 V
 Sheri

SURFACE LEVEL: --**EASTING:** -33.73256 **NORTHING:** 151.00297 DIP/AZIMUTH: 90°/--

BORE No: TP3 PROJECT No: 84335.02 DATE: 27/4/2015 SHEET 1 OF 1

		Description	Degree of Weathering	Rock Strength _{ਹੋ}	Fracture	Discontinuities	Sa	ampling &	n Situ Testing
R	Depth (m)	of	Degree of Weathering Cappic Ca	Strendth Very Low Medium Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	be	e % O	Test Results
	(,	Strata	G G	Ex Low Very Low Medium Very High Ex High		S - Shear F - Fault	Type	Core Rec. % %D	& Comments
-	-	FILLING - brown, sandy clay filling with some fine, medium and coarse gravel and rootlets, damp							
-	-						A/E	-	
-	-								
	- - 0.95 -								
-	- 1	Bore discontinued at 0.95m - services located							
-	-								
	-								
	-								
	-								

TYPE OF BORING: Potholing

WATER OBSERVATIONS: No free groundwater observed

QIC Pty Ltd

LOCATION: Castle Street, Castle Hill

Castle Tower Expansion Project

CLIENT:

PROJECT:

REMARKS: DCP not carried out due to unknown location of gas line. Shale cutting located adjacent to footpath

SAMPLING & IN SITU TESTING LEGEND
 LING & IN SITUTESTING LEGEND

 G Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(550) (MPa)

 W
 Water sample
 p

 >
 Water seep
 S

 ¥
 Water level
 V
 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sam E Environmental **Douglas Partners** Core drilling Disturbed sample Environmental sample Geotechnics | Environment | Groundwater

SURFACE LEVEL: 120.5 AHD EASTING: 314826.1 NORTHING: 6265829.9 DIP/AZIMUTH: 90°/-- BORE No: 904 PROJECT No: 84335.14 DATE: 7/3/2022 SHEET 1 OF 1

_								
		Description	Degree of Weathering	Rock Fract Strength ত Spac	ture Discontinuities			In Situ Testing
RL	Depth (m)	of	Weathering		n) B - Bedding J - Joint	Type	Rec. %	Test Results
	(,	Strata	M M M N N N M M M M M M M M M M M M M M	Wedium Medium Wedi	S - Shear F - Fault		S % R %	comments
	-	FILL/TOPSOIL/Gravelly CLAY: medium plasticity, dark brown, medium, angular to subangular gravel, with root fibres, w>PL				D/E		
-	0.15 - -	FILL/CLAY: medium plasticity, dark brown, with fine angular ironstone and siltstone gravel, with root fibres, w <pl< th=""><th></th><th></th><th></th><th></th><th></th><th></th></pl<>						
120	- 0.4 -	CLAY CI: medium plasticity, pale grey mottled orange-brown, with silt, w <pl, residual<="" stiff,="" th=""><th></th><th></th><th></th><th>D/E</th><th></th><th></th></pl,>				D/E		
	-					B		
-	- 1 - 1.1-	Silty CLAY CL: low plasticity, pale				D/E		
-	-	grey, with fine angular siltstone and shale gravel, w <pl, stiff="" to<br="" very="">hard, extremely weathered rock</pl,>						
						D/E		
119	- 1.5-	Bore discontinued at 1.5m - Target Depth Reached						
-								

RIG: Geo 305

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

CLIENT:

PROJECT:

LOCATION:

DRILLER: Ground Test

LOGGED: SL

CASING: Uncased

TYPE OF BORING:Solid Flight Auger to 1.5mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:Location coordinates are in MGA94 Zone 56.

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample
 Piston sample

SURFACE LEVEL: 122.1 AHD EASTING: 314817.9 NORTHING: 6265812.3 DIP/AZIMUTH: 90°/-- BORE No: 905 PROJECT No: 84335.14 DATE: 7/3/2022 SHEET 1 OF 1

				Deale						
	Denth	Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities			-	In Situ Testing
R	Depth (m)	of			e spacing (m)	B - Bedding J - Joint	Type	sre %	g °	Test Results &
		Strata	M H M S S H M	Contended to the second	0.01 0.10 0.10 1.00	S - Shear F - Fault	Ĺ	ပိမ္မိ	RQD %	α Comments
122		FILL/TOPSOIL/Gravelly CLAY: medium plasticity, dark brown, medium, angular to subangular gravel, with root fibres, w>PL					D/E			
	0.15 -	FILL/Silty CLAY: medium plasticity, dark brown, with gravel, w <pl< td=""><td></td><td></td><td></td><td></td><td>D/E</td><td></td><td></td><td></td></pl<>					D/E			
	- 0.6 -	CLAY CI: medium plasticity, pale grey mottled orange-brown, with silt, w <pl, residual<="" stiff,="" td=""><td></td><td></td><td></td><td></td><td>В</td><td></td><td></td><td></td></pl,>					В			
121	- 1 - - 1.2 -	Silty CLAY CL: low plasticity, pale					D/E			
	- - 1.5-	grey, with fine angular siltstone and shale gravel, w <pl, stiff="" to<br="" very="">hard, extremely weathered rock</pl,>					D/E			
		Bore discontinued at 1.5m - Target Depth Reached								

RIG: Geo 305

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

DRILLER: Ground Test

LOGGED: SL

CASING: Uncased

TYPE OF BORING:Solid Flight Auger to 1.5mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:Location coordinates are in MGA94 Zone 56.

SAN	/IPLIN	G & IN SITU TESTING	LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		11.	Douglas Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			Oracteritaria I Frankramment I Oracum danatari
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
					-		

Appendix D3 – Test Pits

SURFACE LEVEL: 131.7 AHD **EASTING:** 314952 **NORTHING:** 6265750 PIT No: TP13 PROJECT No: 84335.05 DATE: 8/12/2015 SHEET 1 OF 1

			Description	<u>.</u>		Sam	pling &	& In Situ Testing	_	
씸	Dep (m	oth ו)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	`	<i>,</i>	Strata	Ō	Ту	Del	Sam	Comments		5 10 15 20
	-	0.3	FILLING - apparently moderately compacted, grey and brown, silty clay filling with some fine to coarse sand, humid		D	0.2 0.3				
131	- - -		SILTY CLAY - very stiff, brown, silty clay with some fine to medium ironstone gravel, humid		D	0.5 0.6				
	- - - 1 -	0.8	SHALY CLAY - hard, light brown and grey, shaly clay with some ironstone bands, humid		D B	0.9 1.0 1.1				-1
	-		SHALE - extremely low to very low strength, light brown-grey, shale with some ironstone bands		D	1.4 1.5				
130	- - -	1.6	Pit discontinued at 1.6m - refusal on low strength shale							
	- 2 - -									-2
129	- - - - - 3									-3
	-									
128	- - - - 4									-4
	- - -									
127	-									

RIG: 4.5t excavator - 300mm wide bucket

LOGGED: MB

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

QIC Ltd

LOCATION: 6-14 Castle Street, Castle Hill

Castle Towers Expansion Project

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 123.4 AHD **EASTING**: 314912 **NORTHING**: 6265858 PIT No: TP14 PROJECT No: 84335.05 DATE: 8/12/2015 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Water Dynamic Penetrometer Test Depth Ъ of (blows per 150mm) Type Sample Depth (m) Results & Comments Strata 5 10 15 20 FILLING - apparently well compacted, yellow-brown, sandy clay filling with some fine to coarse ripped sandstone gravel, concrete fragments and steel 0.2 D reinforcement bar, humid 0.3 123 0.4 SILTY CLAY - stiff to very stiff, dark brown, silty clay with 0.5 some fine to medium ironstone gravel, damp D 0.6 1.0 1 D 1.0m: becoming red-brown 1.1 22 1.4m: becoming grey mottled light brown 1.6 D 1.7 - 2 -2 2.1 D 2.2 2.3 SHALE - extremely low to very low strength, light 12 2.4 brown-grey, shale with some ironstone bands D 2.5 2.5 Pit discontinued at 2.5m - refusal on low strength shale 3 - 3 120 4 -4 19

RIG: 4.5t excavator - 300mm wide bucket

LOGGED: MB/JN

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

QIC Ltd

LOCATION: 6-14 Castle Street, Castle Hill

Castle Towers Expansion Project

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 125.7 AHD **EASTING:** 314940 **NORTHING:** 6265829 PIT No: TP15 PROJECT No: 84335.05 DATE: 8/12/2015 SHEET 1 OF 1

\square			Description	U		Sam	npling 8	& In Situ Testing		
R	Dept (m)	h	of	Graphic Log	e	th	ple	Posulte &	Water	Dynamic Penetrometer Test (blows per 150mm)
	(11)		Strata	ଞ_	Type	Depth	Sample	Results & Comments	5	5 10 15 20
-	-		SILTY CLAY - very stiff to hard, dark brown, silty clay with some rootlets, humid		D	0.0				. .
	-		0.2m: with some fine to medium ironstone gravel							
	-				D	0.4				t L
-	- (0.6	SILTY CLAY - hard, orange-brown mottled grey, silty clay			0.0				
125	-		SILTY CLAY - hard, orange-brown mottled grey, silty clay with some fine to medium ironstone gravel, damp			0.8				
-	-				B	0.9				
	- 1 -					1.0				-1
	- 1	1.2-	SHALE - extremely low to very low strength, light brown and grey, shale with some ironstone bands		D	1.3				- I I
-	- 1	1.4	Pit discontinued at 1.4m - refusal on low strength shale	<u> </u>		-1.4-				-
124	-		-							
	-									-
-	-2									-2
-	-									
	-									-
	-									
123	-									-
	-									
	- 3									-3
	-									
	-									
	-									
122	-									
	-									
	-4									-4
	-									
-	-									
	-									
121	-									
-	-									
-	-									

RIG: 4.5t excavator - 300mm wide bucket

LOGGED: MB

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

QIC Ltd

LOCATION: 6-14 Castle Street, Castle Hill

Castle Towers Expansion Project

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 126.9 AHD **EASTING:** 314963 **NORTHING:** 6265818 PIT No: TP16 PROJECT No: 84335.05 DATE: 8/12/2015 SHEET 1 OF 1

			Description	lic		Sam		& In Situ Testing	2	Dimensia Demotrometer Test
묍	De (r	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
┝			Strata	$\overline{\nabla}$			Sa			5 10 15 20
-	-		FILLING - apparently well compacted, light grey and brown, silty clay with some fine to coarse sand and fine to medium gravel (crushed basalt), humid		D	0.1				
-	-		0.4m: with sulphur odour		D	0.5 0.6				
126	-	0.7	SILTY CLAY - very stiff to hard, brown, silty clay with some fine to medium ironstone gravel, damp		D	0.9				
-	- 1		1.2m: becoming mottled light brown and grey			1.0 1.3				
-	-	1.6			D	1.4				-
125	-		SHALE - extremely low to very low strength, light brown and grey, shale with some ironstone bands		D	1.8 1.9				-
-	-2	2.2			D	2.1 —2.2—				-2
	- 3		Pit discontinued at 2.2m - refusal on low strength shale							-3
122	-									

RIG: 4.5t excavator - 300mm wide bucket

LOGGED: MB

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

QIC Ltd

LOCATION: 6-14 Castle Street, Castle Hill

Castle Towers Expansion Project

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 128.9 AHD **EASTING:** 315026 **NORTHING:** 6265784 PIT No: TP17 PROJECT No: 84335.05 DATE: 8/12/2015 SHEET 1 OF 1

\square		Description	U		Sam	pling &	& In Situ Testing		
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
		FILLING - apparently well compacted, brown and grey, silty clay filling with some fine to coarse sand and fine to medium gravel (ripped shale and crushed basalt), damp		D	0.1 0.2 0.4 0.5	S			5 10 15 20
128	0.6 -	SILTY CLAY - hard, brown, silty clay with some fine to medium ironstone gravel, damp		B D	0.7 0.8 0.9				
	1.2	1.0m: becoming mottled orange-brown and grey SHALE - extremely low to very low strength, light brown \and grey, shale with some ironstone bands		D	1.2				ן ך
	1.3 -	And grey, shale with some ironstone bands Pit discontinued at 1.3m - refusal on low strength shale	_		—1.3—				
127									
	-2								-2
126	- 3								-3
125	- 4								-4
124									

RIG: 4.5t excavator - 300mm wide bucket

LOGGED: MB

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

QIC Ltd

LOCATION: 6-14 Castle Street, Castle Hill

Castle Towers Expansion Project

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 130.2 AHD EASTING: 314868.9 NORTHING: 6265756.4 PIT No: WTP1 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

	Depth	Description	hic				& In Situ Testing	e	Dynamic	Penetrometer Test
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		Penetrometer Test ows per mm)
		FILL/Gravelly SAND: fine to coarse, dark brown, angular to sub angular gravel with timber, asphalt, trace rootlets		Е	0.0		PID<1 ppm			
-	-				0.1		AF/FA (0.0-0.2m)		-	
130	0.0			Е	0.2					
-⇔	- 0.2 -	FILL/Silty CLAY: low to medium plasticity, dark brown to pale brown, with igneous and sandstone gravel, timber, plastic, asphalt, trace rootlets, w <pl< td=""><td></td><td></td><td>0.2</td><td></td><td>AF/FA (0.2-0.6m)</td><td></td><td></td><td></td></pl<>			0.2		AF/FA (0.2-0.6m)			
-	-	plastic, asphalt, trace rootiets, w <pl< td=""><td></td><td></td><td>0.3</td><td></td><td>PID<1 ppm</td><td></td><td>-</td><td></td></pl<>			0.3		PID<1 ppm		-	
	_			E E	0.4				_	
				/	0.1					
-	-								-	
	- 0.6 -		\bigotimes		0.6				-	
		Silty CLAY CL-CI: low to medium plasticity, red-orange and pale grey, stiff, with siltstone gravel, trace rootlets, residual, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>								
	-								-	
-	-				0.8		PID<1 ppm		-	
				Е						
	-		1 1 1 1 1		0.9					
-	-1								-1	
	_								_	
129	-		1 1 1 1 1							
-	- 1.3-	Pit discontinued at 1.3m								
		- Target Depth Reached								
	-								-	
-	-								-	
	-									
	-									
	-									

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 D
 Disturbed sample
 W
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 129.6 AHD EASTING: 314902.4 NORTHING: 6265762.7 PIT No: WTP2 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

$\left[\right]$		Description	. <u>0</u>		Sam	npling &	& In Situ Testing				
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		Penetromet	er Test) 20
		FILL/Silty CLAY: low plasticity, dark brown to pale brown, with fine grained sand, timber and rootlets, w <pl< td=""><td></td><td>E*</td><td>0.0</td><td>0)</td><td>PID<1 ppm AF/FA (0-0.3m)</td><td></td><td></td><td></td><td></td></pl<>		E*	0.0	0)	PID<1 ppm AF/FA (0-0.3m)				
-	-			E			AF/FA (0-0.311)				
	- 0.3 -	Silty CLAY CI: medium plasticity, red-brown and pale grey with siltstone gravel, trace rootlets, residual, moist, w <pl< td=""><td></td><td></td><td>0.3</td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>			0.3				-		
	-	with siltstone gravel, trace rootlets, residual, moist, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>							-		
	-			E	0.5		PID<1 ppm		-		
129	-				0.6				-		
-	-										
	-								-		
	-1								-1		
	- 1.1 -	Pit discontinued at 1.1m - Target Depth Reached									
-	-								-		
	-								-		
	-								-		
128	-								-		
	-										
	-										

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: *Field replicate BD1/20220310 taken at 0-0.1m depth, AF/FA=Asbestos Fines/Fibrous Asbestos sample

SURFACE LEVEL: 129.4 AHD EASTING: 314890.7 NORTHING: 6265802.6

PIT No: WTP3 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

_									SHELT	
.	Depth	Description	hic				& In Situ Testing	e	Dvnamic	Penetrometer Test
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blc	ws per mm)
-	-	FILL/Silty CLAY: low plasticity, dark brown, with wood (branches up to 35 mm diameter), timber, terracotta pipe fragments, plastic and igneous gravel, trace rootlets, w <pl, moist<="" td=""><td></td><td>E</td><td>0.0 • 0.1</td><td></td><td>PID<1 ppm AF/FA and PACM (0.0-0.3m)</td><td></td><td>-</td><td></td></pl,>		E	0.0 • 0.1		PID<1 ppm AF/FA and PACM (0.0-0.3m)		-	
-	- 0.3 -	Silty CLAY CI: medium plasticity, red-orange and pale grey, with siltstone gravel, trace rootlets, w <pl, moist,="" residual<="" td=""><td></td><td>E</td><td>0.3</td><td></td><td></td><td></td><td>-</td><td></td></pl,>		E	0.3				-	
129	-			E	0.5		PID<1 ppm		-	
-	-				0.6					
-	- 1 1.0-	Pit discontinued at 1.0m - Target Depth Reached							-	
128	-								-	
-	-								-	

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample, PACM=Potential Asbestos Containing Material

SURFACE LEVEL: 124.4 AHD EASTING: 314838.5 NORTHING: 6265795.9

PIT No: WTP4 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Dynamic Penetrometer Test Water Depth Log Ъ Sample of Type (blows per mm) Depth (m) Results & Comments Strata 20 10 15 0.0 PID<1 ppm FILL/Silty CLAY: low to medium plasticity, dark brown, with timber, trace rootlets, w<PL Е 0.1 AF/FA (0.0-0.2m) Е 0.2 0.2 Pit discontinued at 0.2m - Target Depth Reached 124 1 123

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 D
 Disturbed sample
 P
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 125.1 AHD EASTING: 314862.5 Showground Road & Kentwell Avenue, Castle NORTHING: 6265816.7

PIT No: WTP5 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

	Description	U		Sam	pling &	& In Situ Testing				
니 Depth	of	aphi(-og	ē				/ater	Dynamic F (blo	Penetrome ws per mm	ter Test ı)
	Strata	Gr	Тур	Dep	Sam	Comments	3		0 15	20
□ Depth (m) 		C	a a Type	Sarr 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	S ample Sample	& In Situ Testing Results & Comments PID<1 ppm	Water	Dynamic F (blo -		
1 1.0 	Pit discontinued at 1.0m - Target Depth Reached							- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample LING & IN SITUTESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample P Water seep ¥ Water level

SURFACE LEVEL: 124.8 AHD **EASTING:** 314843.2 NORTHING: 6265797.3

PIT No: WTP6 **PROJECT No: 84335.14** DATE: 10/3/2022 SHEET 1 OF 1

Π		Description	. <u>ಲ</u>		San	npling &	& In Situ Testing					
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (blo	Penetro ws per	meter mm)	Fest
		Strata	0	ŕ		Sar			5	10	15	20
		FILL/Silty CLAY: low to medium plasticity, dark brown, with timber, bricks, terracotta pipe fragments and rootlets, w <pl< td=""><td></td><td>E*</td><td>0.0</td><td></td><td>PID<1 ppm</td><td></td><td></td><td></td><td></td><td></td></pl<>		E*	0.0		PID<1 ppm					
				E	0.1		AF/FA (0.0-0.2m)		-	•	•	
	0.2	Silty CLAY CL-CI: low to medium plasticity, pale grey and mottled orange, with siltstone gravel, trace rootlets, w <pl, residual<="" td=""><td></td><td></td><td>0.2</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl,>			0.2				-			
		residuai		E	0.3		PID<1 ppm		-			
					0.4				-			
									-			
									-			
									-	•	•	
124										•	•	
									-	•	•	
	-1 1.0-								-1			
		Pit discontinued at 1.0m - Target Depth Reached							-			
										•		
										•		
									-			
											•	
									-		•	:
-									-			:
									-		•	
123									-		•	
									-	•	· • • •	

RIG: 4t Excavator with 450mm wide bucket

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: Free groundwater observed whilst excavating at 0.3m depth, possibly perched from recent rain

REMARKS: *Field replicate BD5/20220310 taken at 0.0-0.1m depth, AF/FA=Asbestos Fines/Fibrous Asbestos sample

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

QIC Ltd Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle Hill

SURFACE LEVEL: 128.5 AHD EASTING: 314829.6 NORTHING: 6265760.6 PIT No: WTP7 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

		Description	0		Sam	ipling 8	& In Situ Testing				
RL	Depth (m)	Description of	Graphic Log	e				Water	Dynamic I (blo	Penetromete ws per mm)	r Test
	(11)	Strata	ъ_	Type	Depth	Sample	Results & Comments	5		10 15	20
		FILL/Silty CLAY: low plasticity, dark brown, with rootlets and timber, w <pl< td=""><td></td><td>Е</td><td>0.0</td><td></td><td>PID<1 ppm</td><td></td><td></td><td></td><td></td></pl<>		Е	0.0		PID<1 ppm				
	-				0.1		AF/FA (0.0-0.15m)		-		
	0.15	FILL (Cilly, CLAV), low to modium planticity, polo byour		Е	0.15		AF/FA (0.15-1.0m)				
-	-	FILL/Silty CLAY: low to medium plasticity, pale brown, with igneous and sandstone gravel, terracotta pipe fragments, trace rootlets, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>							-		
		iragments, trace rootiets, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>									
-	-				0.3		PID<1 ppm		-		
				E*							
	-				0.4						
128	_										
1											
-	-			Е					-		÷
-	-								-		
											÷
-	-								-		÷
											÷
	-										÷
	-1 1.0-		XX		1.0				-1		÷
		Silty CLAY CL-CI: low to medium plasticity, pale grey and mottled orange, with siltstone gravel, w <pl, residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
-	-								-		
-	-				1.2		PID<1 ppm		-		
				Е							
-	-				1.3				-		
	_										
			1/1/								
127	-								-		:
											:
$\left \right $	- 1.6	Pit discontinued at 1.6m						+			
		- Target Depth Reached									:
F	-								-		
											:
	-										
	-										:
											÷
											:
		cavator with 450mm wide bucket			GGE				VEY DATUM:		

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: *Field replicate BD2/20220310 taken at 0.3-0.4m depth, AF/FA=Asbestos Fines/Fibrous Asbestos sample

SURFACE LEVEL: 124.4 AHD EASTING: 314825.9 NORTHING: 6265789

PIT No: WTP8 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

Π		Description	U	Sampling & In Situ Testin			& In Situ Testing					
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Pe (blow 5 10	enetrometer Test rs per mm) 15 20		
		FILL/Silty CLAY: low plasticity, dark brown to pale brown, with bricks, glass, timber, igneous gravel and rootlets, w <pl< td=""><td></td><td>E</td><td>0.0</td><td>σ</td><td>PID<1 ppm</td><td></td><td>-</td><td></td></pl<>		E	0.0	σ	PID<1 ppm		-			
	0.3 -	^{1.3} Silty CLAY CL-CI: low to medium plasticity, pale grey and mottled orange-yellow, with siltstone gravel, trace rootlets, w <pl, residual<="" td=""><td></td><td>E</td><td>0.3</td><td></td><td></td><td></td><td></td><td></td></pl,>		E	0.3							
124					0.5		PID<1 ppm		- -			
				E	0.6							
									-			
	-1 1.0-	Pit discontinued at 1.0m - Target Depth Reached							-1			
									-			
123									-			
									-			
									-			

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 122.7 AHD EASTING: 314835.2 NORTHING: 6265811.1 PIT No: WTP9 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

		Description	Description .g Sampling & In Situ Testing									
RL	Depth (m)	epth (m) of	Graphic Log	Type		Sample	Results &	Water	Dynamic Penetrometer Test (blows per mm)			
	(,	Strata	Ō	Ţ	Depth	San	Results & Comments	>		0 15	20	
-	-	FILL/Silty CLAY: low to medium plasticity, dark brown, with bricks, igneous and sandstone gravel and rootlets, w <pl< td=""><td></td><td>E</td><td>0.0</td><td></td><td>PID<1 ppm AF/FA (0.0-0.4m)</td><td></td><td>-</td><td></td><td></td></pl<>		E	0.0		PID<1 ppm AF/FA (0.0-0.4m)		-			
-	-			Е					-			
	- 0.4 -	Silty CLAY CL-CI: low to medium plasticity, pale grey and mottled orange, with siltstone gravel, trace rootlets, w <pl, residual<="" td=""><td></td><td></td><td>0.4</td><td></td><td>PID<1 ppm</td><td></td><td></td><td></td><td></td></pl,>			0.4		PID<1 ppm					
-	-			E	0.0				-			
122	-								-			
_	- 1 - 1.1-								-1			
-	-	Pit discontinued at 1.1m - Target Depth Reached							-			
-	-								-			
-	-								-			
121	-								-			
-	-								-			
-	-								-			

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Builk sample
 P
 Piston sample
 PI(A) Point load axial test ts(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load diametral test ts(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 W
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 122.3 AHD EASTING: 314824.7 NORTHING: 6265810.2

PIT No: WTP9A PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

_												
	Depth	Description	hic				& In Situ Testing	ы Б	Dynamic	Dynamic Penetrometer Test (blows per mm)		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water			20	
122	-	FILL/Silty CLAY: low to medium plasticity, dark brown, with plastic, terracotta pipe fragments, wood (branches up to 50mm diameter), metal sheets, glass, tile, bricks and igneous gravel, trace rootlets							-			
121	- 0.4 - - -	Pit discontinued at 0.4m - Test pit discontinued due to water inflow to surface level (note: significant rainfall in preceding week)							-1			
-	-								-			

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: Free groundwater observed whilst excavating at 0.3m depth, possibly perched from recent rain

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample

SURFACE LEVEL: 120.8 AHD EASTING: 314838.1 NORTHING: 6265833.5 PIT No: WTP10 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

		Description	<u>.</u>		San		Sampling & In Situ Testing				Dynamic Penetrometer Test				
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic I (blo	Penetrometer Test ows per mm)					
		Strata			0.0	Sa	PID<1 ppm		5	10 15	20 :				
		FILL/Silty CLAY: low to medium plasticity, dark brown, with bricks, igneous gravel and rootlets, w <pl< td=""><td></td><td>E*</td><td>0.0</td><td></td><td>r ib «r ppm</td><td></td><td>•</td><td></td><td></td></pl<>		E*	0.0		r ib «r ppm		•						
	-				0.1		AF/FA (0.0-0.2m)		-		•				
				E					•						
	- 0.2				0.2				_		•				
	0.2	Silty CLAY CL-CI: low to medium plasticity, red-orange and pale grey, trace rootlets, w <pl, residual<="" td=""><td></td><td>1</td><td>0.2</td><td></td><td></td><td></td><td>•</td><td></td><td></td></pl,>		1	0.2				•						
			1/1/		0.3		PID<1 ppm		_						
				E	0.0		r ib i ppin								
			1/1/		0.4				_						
				1	0.4										
			1/1/												
				1					-						
			1/1/	1											
ſ]					-						
			1/1/	1					•						
ſ									-						
									•						
120									-						
									•						
ł	-			{					-						
				1					•						
ł	-1 1.0	Pit discontinued at 1.0m	<u> </u>						-1						
		- Target Depth Reached													
ł	-								-						
									•						
ł	-								-		•				
ł	-								-						
ł	-								-						
ł	$\left \right $								-						
									•		•				
ł	$\left \right $								-		•				
									•						
ł	$\left \right $								-						
									•		•				
119									-		•				
									•						
ŀ									-						
		poveter with 450mm wide bucket													

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: *Field replicate BD4/20220310 taken at 0.0-0.1m depth, AF/FA=Asbestos Fines/Fibrous Asbestos sample

SURFACE LEVEL: 121.3 AHD EASTING: 314820.1 NORTHING: 6265819.8 PIT No: WTP11 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

Π		Description	. <u>u</u>		Sam	pling &	& In Situ Testing					
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (blo	Dynamic Penetrometer Test (blows per mm)		
		Strata		É.		Sai	PID<1 ppm		5	10 :	15 :	20
		FILL/Silty CLAY: low plasticity, dark brown, with bricks, plastic and rootlets, w <pl< td=""><td></td><td>Е</td><td>0.0</td><td></td><td></td><td></td><td></td><td>:</td><td></td><td></td></pl<>		Е	0.0					:		
-	-				0.1		AF/FA (0.0-0.2m)		-			
				Е								
-	- 0.2	Silty CLAY CL CL low to medium placticity, pale grey and			0.2							
		Silty CLAY CL-CI: low to medium plasticity, pale grey and mottled orange, with siltstone gravel, w <pl, residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>										
121	-				0.3		PID<1 ppm					
				Е						-	-	
-	-				0.4				-			
										-		
ŀ	-		1/1/						-	-		
											:	
	-									:		
	-									-	:	-
	_											
			1/1/							:		
	-										:	
	-1 1.0		1/1/						1			
		Pit discontinued at 1.0m - Target Depth Reached									:	
-	-								-	:		
-	-								T I			
										:		-
120	-								-		÷	
ŀ	-								-			
	-								-	-		
										:	:	
	-									:	:	
										:	:	
	_										-	
										-		
	-									:	÷	:
										:	÷	:
										:	:	<u> </u>

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: AF/FA=Asbestos Fines/Fibrous Asbestos sample

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (KPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 124.3 AHD EASTING: 314802.4 NORTHING: 6265797

PIT No: WTP12 PROJECT No: 84335.14 DATE: 10/3/2022 SHEET 1 OF 1

		Description			Sampling & In Situ Testing							
R	Depth	Description of	Graphic Log	(D				Water	Dynamic F	Penetrometer ws per mm)	Test	
Ľ	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Ň		0 15	20	
		FILL/Silty CLAY: low to medium plasticity, dark brown to pale brown, with bricks, plastic, glass, concrete, igneous gravel and rootlets, w <pl< td=""><td></td><td>E*</td><td>0.0</td><td>05</td><td>PID<1 ppm AF/FA (0.0-0.5m)</td><td></td><td>-</td><td></td><td></td></pl<>		E*	0.0	05	PID<1 ppm AF/FA (0.0-0.5m)		-			
124				E					-			
				-					-			
	0.5-	FILL/Silty CLAY: low to medium plasticity, dark grey, with igneous gravel, trace rootlets, w <pl< td=""><td>\bigotimes</td><td></td><td>0.5</td><td></td><td>AF/FA (0.5-0.9m)</td><td></td><td>-</td><td></td><td></td></pl<>	\bigotimes		0.5		AF/FA (0.5-0.9m)		-			
				E	0.6		PID<1 ppm		-			
				<u> </u>	0.7				-			
	0.9-	Silty CLAY CL-CI: low to medium plasticity, pale grey and mottled orange, trace rootlets, w <pl, residual<="" td=""><td></td><td></td><td>0.9</td><td></td><td>PID<1 ppm</td><td></td><td>-1</td><td></td><td></td></pl,>			0.9		PID<1 ppm		-1			
				E	1.1				-			
123									-			
	1.5-	Pit discontinued at 1.5m - Target Depth Reached							-			
									-			
									-			
		eveter with 450mm wide bucket										

RIG: 4t Excavator with 450mm wide bucket

CLIENT:

PROJECT:

LOCATION:

QIC Ltd

Hill

Proposed Leisure Centre

Showground Road & Kentwell Avenue, Castle

LOGGED: SR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed whilst excavating

REMARKS: *Field replicate BD3/20220310 taken at 0.0-0.1m depth, AF/FA=Asbestos Fines/Fibrous Asbestos sample

